Math, asked by mohanchiriki972, 3 months ago

(y+x^2/2+y^3/3)dx+ 1/4(x+xy^2)dy=0​

Answers

Answered by shadowsabers03
4

Given differential equation is,

\longrightarrow \left(y+\dfrac{x^2}{2}+\dfrac{y^3}{3}\right)\,dx+\dfrac{1}{4}\left(x+xy^2\right)\,dy=0

Multiply each term by x^my^n.

\footnotesize\text{$\longrightarrow\left(x^my^{n+1}+\dfrac{1}{2}\,x^{m+2}y^n+\dfrac{1}{3}\,x^my^{n+3}\right)\,dx+\dfrac{1}{4}\left(x^{m+1}y^n+x^{m+1}y^{n+2}\right)\,dy=0\dots(1)$}

Let the solution of this differential equation be in the form,

\longrightarrow S(x,\ y)=C\quad\quad\dots(i)

where S is a function in x and y, such that,

\longrightarrow\dfrac{\partial S}{\partial x}=\dfrac{\partial S}{\partial y}=0

When we find \dfrac{\partial S}{\partial x} and \dfrac{\partial S}{\partial y} without multiplying the equation by x^my^n the condition \dfrac{\partial S}{\partial x}=\dfrac{\partial S}{\partial y} may not be satisfied, that's why x^my^n is multiplied so that the condition would be satisfied for any value of m and n.

Assume the given differential equation be in the form,

\longrightarrow\dfrac{\partial S}{\partial x}\,dx+\dfrac{\partial S}{\partial y}\,dy=0\quad\quad\dots(2)

By assuming this way, the coefficients of dx and dy become zero each, and then LHS becomes equal to RHS that is zero.

One can also assume the equation be in the form,

\longrightarrow\dfrac{\partial S}{\partial y}\,dx+\dfrac{\partial S}{\partial x}\,dy=0

Comparing (1) and (2) we get,

\longrightarrow\dfrac{\partial S}{\partial x}=x^my^{n+1}+\dfrac{1}{2}\,x^{m+2}y^n+\dfrac{1}{3}\,x^my^{n+3}\quad\quad\dots(3)

Performing partial differentiation wrt y,

\longrightarrow\dfrac{\partial^2S}{\partial x\,\partial y}=(n+1)x^my^n+\dfrac{1}{2}\,nx^{m+2}y^{n-1}+\dfrac{1}{3}\,(n+3)x^my^{n+2}\quad\quad\dots(4)

Also,

\longrightarrow\dfrac{\partial S}{\partial y}=\dfrac{1}{4}\left(x^{m+1}y^n+x^{m+1}y^{n+2}\right)

\longrightarrow\dfrac{\partial S}{\partial y}=\dfrac{1}{4}\,x^{m+1}y^n+\dfrac{1}{4}\,x^{m+1}y^{n+2}\quad\quad\dots(5)

Performing partial differentiation wrt x,

\longrightarrow\dfrac{\partial^2S}{\partial x\,\partial y}=\dfrac{1}{4}\,(m+1)x^my^n+\dfrac{1}{4}\,(m+1)x^my^{n+2}\quad\quad\dots(6)

Equating (4) and (6),

\footnotesize\text{$\longrightarrow(n+1)x^my^n+\dfrac{1}{2}\,nx^{m+2}y^{n-1}+\dfrac{1}{3}\,(n+3)x^my^{n+2}=\dfrac{1}{4}\,(m+1)x^my^n+\dfrac{1}{4}\,(m+1)x^my^{n+2}$}

\longrightarrow(n+1)y+\dfrac{1}{2}\,nx^2+\dfrac{1}{3}\,(n+3)y^3=\dfrac{1}{4}\,(m+1)y+\dfrac{1}{4}\,(m+1)y^3

\longrightarrow\left(n+1-\dfrac{m+1}{4}\right)y+\dfrac{1}{2}\,nx^2+\left(\dfrac{n+3}{3}-\dfrac{m+1}{4}\right)y^3=0

We equate each coefficient to zero. So,

  • n+1-\dfrac{m+1}{4}=0
  • \dfrac{1}{2}\,n=0
  • \dfrac{n+3}{3}-\dfrac{m+1}{4}=0

Solving them we get,

  • m=3
  • n=0

Then (3) becomes,

\longrightarrow\dfrac{\partial S}{\partial x}=x^3y+\dfrac{1}{2}\,x^5+\dfrac{1}{3}\,x^3y^3

\longrightarrow\partial S=\left(x^3y+\dfrac{1}{2}\,x^5+\dfrac{1}{3}\,x^3y^3\right)\ \partial x

Integrating, (note that y is treated as constant here)

\displaystyle\longrightarrow S=\int\left(x^3y+\dfrac{1}{2}\,x^5+\dfrac{1}{3}\,x^3y^3\right)\,\partial x

\displaystyle\longrightarrow S=\dfrac{1}{4}\,x^4y+\dfrac{1}{12}\,x^6+\dfrac{1}{12}\,x^4y^3+f_1(y)\quad\quad\dots(7)

where f_1(y) is an arbitrary function in y but is treated as constant of integration as the partial integration is done wrt x.

And (5) becomes,

\longrightarrow\dfrac{\partial S}{\partial y}=\dfrac{1}{4}\,x^4+\dfrac{1}{4}\,x^4y^2

\longrightarrow\partial S=\left(\dfrac{1}{4}\,x^4+\dfrac{1}{4}\,x^4y^2\right)\,\partial y

Integrating, (note that x is treated as constant here)

\displaystyle\longrightarrow S=\int\left(\dfrac{1}{4}\,x^4+\dfrac{1}{4}\,x^4y^2\right)\,\partial y

\displaystyle\longrightarrow S=\dfrac{1}{4}\,x^4y+\dfrac{1}{12}\,x^4y^3+f_2(x)\quad\quad\dots(8)

where f_2(x) is similar to f_1(y).

Comparing (7) and (8) we get,

  • f_1(y)=0
  • f_2(x)=\dfrac{1}{12}\,x^6

Then,

\displaystyle\longrightarrow S=\dfrac{1}{4}\,x^4y+\dfrac{1}{12}\,x^4y^3+\dfrac{1}{12}\,x^6

Hence the solution to our differential equation is given by (i) as,

\displaystyle\longrightarrow\dfrac{1}{4}\,x^4y+\dfrac{1}{12}\,x^4y^3+\dfrac{1}{12}\,x^6=C_1

Dividing by x^4,

\displaystyle\longrightarrow\dfrac{1}{4}\,y+\dfrac{1}{12}\,y^3+\dfrac{1}{12}\,x^2=\dfrac{C_1}{x^4}

Multiplying by 12,

\displaystyle\longrightarrow3y+y^3+x^2=\dfrac{12C_1}{x^4}

\displaystyle\longrightarrow y^3+3y=\dfrac{12C_1}{x^4}-x^2

Taking 12C_1=C,

\displaystyle\longrightarrow\underline{\underline{y^3+3y=\dfrac{C}{x^4}-x^2}}

Similar questions