Math, asked by kakarot58, 1 month ago

y=x^2+2e^x+2 at (0,4). (find the equation of tangent and normal to the curve at the point on it)​

Answers

Answered by amansharma264
14

EXPLANATION.

Equation.

⇒ y = x² + 2eˣ + 2 at (0,4).

As we know that,

We can differentiate w.r.t x, we get.

⇒ dy/dx = d(x² + 2eˣ + 2)/dx.

⇒ dy/dx = 2x + 2eˣ + 0.

Put the value of x = 0 & y = 4 in equation, we get.

⇒ dy/dx = 2(0) + 2e⁽⁰⁾.

⇒ dy/dx = 2e⁽⁰⁾ = 2.

⇒ Slope of the tangent = 2.

As we know that,

Equation of tangent.

⇒ (y - y₁) = m(x - x₁).

Put the value in the equation, we get.

⇒ (y - 4) = 2(x - 0).

⇒ y - 4 = 2x.

⇒ 2x - y + 4 = 0.

Equation of normal.

⇒ (y - y₁) = -1/m(x - x₁).

Slope of normal = -1/m = -1/2.

Put the value in the equation, we get.

⇒ (y - 4) = -1/2(x - 0).

⇒ 2(y - 4) = -(x).

⇒ 2y - 8 = -x.

⇒ 2y + x - 8 = 0.

                                                                                                                         

MORE INFORMATION.

(1) = The inclination of the tangent with x-axes = tan⁻¹(dy/dx).

(2) = Slope of tangent = (dy/dx) at (x₁, y₁).

(3) = Slope of normal = -(dx/dy) at (x₁, y₁).

Answered by satishkale542
6

Answer:

if they don't understand then show them my messege

must be they watch

Similar questions