Math, asked by hemlatasingh917, 19 days ago

y = √x/a +√a/x find dy/dx

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm \: y =  \sqrt{\dfrac{x}{a} }  +  \sqrt{\dfrac{a}{x} }  \\

can be rewritten as

\rm \: y = \dfrac{ \sqrt{x} }{ \sqrt{a} }  + \dfrac{ \sqrt{a} }{ \sqrt{x} }  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx} y = \dfrac{d}{dx} \bigg(\dfrac{ \sqrt{x} }{ \sqrt{a} }  + \dfrac{ \sqrt{a} }{ \sqrt{x} }\bigg)  \\

\rm \: \dfrac{dy}{dx} = \dfrac{1}{ \sqrt{a} }\dfrac{d}{dx}  \sqrt{x}  +  \sqrt{a} \dfrac{d}{dx}  \dfrac{1}{ \sqrt{x} }  \\

\rm \: \dfrac{dy}{dx} = \dfrac{1}{ \sqrt{a} }\dfrac{d}{dx}   {\bigg(x\bigg) }^{\dfrac{1}{2} }   +  \sqrt{a} \dfrac{d}{dx}{\bigg(x\bigg) }^{ - \dfrac{1}{2} }  \\

\rm \: \dfrac{dy}{dx} = \dfrac{1}{ \sqrt{a} }\dfrac{1}{2}   {\bigg(x\bigg) }^{\dfrac{1}{2}  - 1}    -  \dfrac{1}{2} \sqrt{a}  {\bigg(x\bigg) }^{ - \dfrac{1}{2}  - 1}  \\

\rm \: \dfrac{dy}{dx} = \dfrac{1}{ 2\sqrt{a} } {\bigg(x\bigg) }^{ - \dfrac{1}{2}}    -  \dfrac{ \sqrt{a} }{2} {\bigg(x\bigg) }^{ - \dfrac{3}{2}}  \\

\rm \: \dfrac{dy}{dx} = \dfrac{1}{ 2\sqrt{a}  \sqrt{x} }   -  \dfrac{ \sqrt{a} }{2x \sqrt{x} }  \\

\rm \: \dfrac{dy}{dx} = \dfrac{x - a}{ 2x\sqrt{a} \sqrt{x} }   \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \dfrac{dy}{dx} = \dfrac{x - a}{ 2x\sqrt{a} \sqrt{x} }   \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions