y = x log ((x - 1)/(x+1))
Answers
Answer:
Given : y = x ln{(x - 1)/(x +1)}
To Find : nth derivative
Solution:
y = x ln{(x - 1)/(x +1)}
log (a/b) = loga - logb
=> y = x {ln (x - 1) - ln(x + 1) }
=> y = x ln(x - 1) - x ln(x + 1)
=> y' = x /(x - 1) + ln(x - 1) - x/(x + 1) - ln(x + 1)
=> y' = x/(x - 1) - x/(x + 1) + ln(x - 1) - ln(x + 1)
=> y' = (x - 1 + 1)/(x - 1) - (x + 1 - 1)/(x + 1) + ln(x - 1) - ln(x + 1)
=> y' = 1 + 1/(x - 1) - 1 + 1/(x + 1) + ln(x - 1) - ln(x + 1)
=> y' = 1/(x - 1) + 1/(x + 1) + ln(x - 1) - ln(x + 1)
Now nth Derivative can be found
yₙ = (-1)ⁿ⁻¹(n-1)!/(x - 1)ⁿ +(-1)ⁿ⁻¹(n-1)!/(x+ 1)ⁿ + (-1)ⁿ⁻²(n-2)!/(x - 1)ⁿ⁻¹ -(-1)ⁿ⁻²(n-2)!/(x+ 1)ⁿ⁻¹
yₙ = (-1)ⁿ⁻²(n-2)! { -1(n-1)/(x - 1)ⁿ -1(n-1)/(x + 1)ⁿ + 1/(x - 1)ⁿ⁻¹ - 1/(x+ 1)ⁿ⁻¹ )
yₙ = (-1)ⁿ⁻²(n-2)! { -1(n-1)/(x - 1)ⁿ -1(n-1)/(x + 1)ⁿ + (x-1)/(x - 1)ⁿ - (x+1)/(x+ 1)ⁿ )
=> yₙ = (-1)ⁿ⁻²(n-2)! {(x-n)/(x - 1)ⁿ -(x + n)/(x + 1)ⁿ}