y = x^sinx + sinx^x find dy/dx
Answers
Answer:
Step-by-step explanation: y = x^sinx + sinx^x find dy/dx
let u = x^sinx and v = sinx^x therefore, y = u + v
differentiating with respect to x, we get
dy/dx = du/dx + dv/dx -----------(1)
Here, u = x^sinx
taking log both side
㏒u = ㏒x^sinx
logu = sinx logx
again differentiating with respect to x, we get
1/u du/dx = sinx (d/dx logx) + logx ( d/dx sinx )
1/u du/dx = sinx . 1/x + logx cosx
1/u du/dx = [sinx/x + log cosx ]
du/dx = u [sinx/x + logx cosx ]
du/dx = x^sinx [ sinx/x + logx cosx ] -------------(2)
similarly,
v = sinx^x
differentiating with respect to x, we get
1/v dv/dx = x cotx + logsinx
dv/dx = v [x cotx + logsinx ]
dv/dx = sinx^x [x cotx + logsinx ] ----------------(3)
putting the value of du/dx from (2) and dv/dx from (3) in equation (1), we get
dy/dx = x^sinx [sinx/x + logx cosx ] + sinx^x [x cotx + logsinx ]