Math, asked by niyatiabatra, 1 year ago

y√x²+1=log(√x²+1-x) then prove that dy/dx+xy+1=0

Answers

Answered by hukam0685
14

Step-by-step explanation:

y \sqrt{( {x}^{2 }  + 1)}  =   log( \sqrt{( {x}^{2} + 1 } - x )  \\  \\ then \: prove \: that \\  \\ ( {x}^{2} + 1) \frac{dy}{dx}   + xy + 1 = 0 \\

because x and y can't separate simply,so apply implicit Differentiation

y \frac{d( \sqrt{ {x}^{2} + 1 }) }{dx}  +   \sqrt{ {x}^{2} + 1 }  \frac{dy}{dx}  =  \frac{d( log( \sqrt{ {x}^{2}  + 1}  - x)) }{dx}  \\  \\ y. \frac{1}{2 \sqrt{ {x}^{2} + 1 }  } .(2x + 0) +  \sqrt{ {x}^{2}  + 1}  \frac{dy}{dx}  =  \frac{1}{( \sqrt{ {x}^{2}  + 1}  - x))} . (\frac{1}{2 \sqrt{ {x}^{2} + 1 } } .(2x + 0) - 1) \\  \\  \frac{xy}{ \sqrt{ {x}^{2} + 1 } } +  \sqrt{ {x}^{2}  + 1}  \:  \frac{dy}{dx} =  \frac{x -  \sqrt{ {x}^{2} + 1 } }{{( \sqrt{ {x}^{2}  + 1}  - x))} \sqrt{ {x}^{2} + 1 } }  \\  \\  \frac{xy}{ \sqrt{ {x}^{2} + 1 } } +  \sqrt{ {x}^{2}  + 1}  \:  \frac{dy}{dx} =  \frac{ - 1}{ \sqrt{ {x}^{2} + 1 } }  \\  \\ take \: LCM \: and \: cancel \: denominator \: both \: sides \\  \\ xy + ( {x}^{2}  + 1) \frac{dy}{dx}  =  - 1 \\  \\ ( {x}^{2}  + 1) \frac{dy}{dx}  + xy + 1 = 0 \\  \\ hence \: proved

Similar questions