Math, asked by adhilaadhii2004, 4 days ago

y=x³.Find out double differenciation​

Answers

Answered by mathdude500
8

\large\underline{\sf{Given- }}

\rm \: y =  {x}^{3}  \\

\large\underline{\sf{To\:Find - }}

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} }  \\

\large\underline{\sf{Solution-}}

Given function is

\rm \: y =  {x}^{3} \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}y =  \dfrac{d}{dx}{x}^{3} \\

We know,

\boxed{\rm{  \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\

So, using this result, we get

\rm \: \dfrac{dy}{dx} =  {3x}^{2}  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}\dfrac{dy}{dx} = \dfrac{d}{dx} {3x}^{2}  \\

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = 3\dfrac{d}{dx} {x}^{2}   \\

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = 3 \times 2x   \\

\rm\implies \:\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = 6x   \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by anindyaadhikari13
14

Solution:

Given That:

 \rm \longrightarrow y =  {x}^{3}

Differentiating wrt x, we get:

 \rm \longrightarrow  \dfrac{dy}{dx}  =  \dfrac{d}{dx}( {x}^{3} )

We know that:

 \rm \longrightarrow  \dfrac{d}{dx}  ( {x}^{n} )=n {x}^{n - 1}

Therefore:

 \rm \longrightarrow  \dfrac{dy}{dx}  =  3 {x}^{3 - 1}

 \rm \longrightarrow  \dfrac{dy}{dx}  =  3 {x}^{2}

Differentiating again wrt x, we get:

 \rm \longrightarrow  \dfrac{ {d}^{2} y}{d {x}^{2} }  =   \dfrac{d}{dx} (3 {x}^{2})

 \rm \longrightarrow  \dfrac{ {d}^{2} y}{d {x}^{2} }  =   3\dfrac{d}{dx} ( {x}^{2})

 \rm \longrightarrow  \dfrac{ {d}^{2} y}{d {x}^{2} }  =   3 \times 2x

 \rm \longrightarrow  \dfrac{ {d}^{2} y}{d {x}^{2} }  = 6x

★ Which is our required answer.

Learn More:

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}\\ \end{gathered}

Similar questions