Math, asked by riyakavthankar7, 3 months ago

y=x³ sin^-1x; find dy/dx​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {x}^{3}  \: {sin}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}( {x}^{3}  \: {sin}^{ - 1}x)

We know,

Product rule of differentiation

\rm :\longmapsto\:\dfrac{d}{dx}(u.v) = u \: \dfrac{d}{dx}v \:  \:  +  \:  \: v\dfrac{d}{dx}u

Now,

Here,

\rm :\longmapsto\:u =  {x}^{3}

and

\rm :\longmapsto\:v=  {sin}^{ - 1}x

On substituting the values, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sin}^{ - 1}x \: \dfrac{d}{dx} {x}^{3}  \:  +  \: {x}^{3}  \:\dfrac{d}{dx} {sin}^{ - 1}x

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sin}^{ - 1}x \: (3 {x}^{3 - 1})  \:  +  \: {x}^{3}  \:\dfrac{1}{ \sqrt{1 -  {x}^{2} } }

\red{\bigg \{\tt \: \because\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: and \:  \: \dfrac{d}{dx} {sin}^{ - 1}x = \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} =  3 \: {sin}^{ - 1}x \: ({x}^{2})  \:  +    \:\dfrac{ {x}^{3} }{ \sqrt{1 -  {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} =   {x}^{2}  \bigg(3 \: {sin}^{ - 1}x   \:  +    \:\dfrac{ {x} }{ \sqrt{1 -  {x}^{2} } } \bigg)

Additional information :-

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {x}=  1}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {k}=  0}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {sinx}=  cosx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cosx}=   -  \: sinx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cosecx}=   -  \: cosecx \: cotx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {secx}=   secx \: tanx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {tanx}=   sec^{2}x }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cotx}=    - \:  cosec^{2}x }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} { {tan}^{ - 1}x }=   \dfrac{1}{1 +  {x}^{2} }  }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} { {cot}^{ - 1}x }=   \dfrac{ -  \: 1}{1 +  {x}^{2} }  }

 \red{\rm :\longmapsto\:\dfrac{d}{dx} { {cos}^{ - 1}x }=   \dfrac{ -  \: 1}{ \sqrt{1 -  {x}^{2} } }  }

Similar questions