Math, asked by indilladernier, 4 months ago

y=x6-5x5+5x4-10 find minimum and maximum value​

Answers

Answered by Tanu7c
1

Step-by-step explanation:

Given : Equation x^5-5x^4+5x^3-10x

5

−5x

4

+5x

3

−10

To find : The minimum and maximum values of the equation ?

Solution :

To find the maximum minimum points we find the first derivative and get the critical points then substitute that points in the second derivative.

Let y=x^5-5x^4+5x^3-10y=x

5

−5x

4

+5x

3

−10

Derivate w.r.t x,

y'=5x^4-20x^3+15x^2y

=5x

4

−20x

3

+15x

2

For critical points put y'=0,

5x^4-20x^3+15x^2=05x

4

−20x

3

+15x

2

=0

5x^2(x^2-4x+3)=05x

2

(x

2

−4x+3)=0

5x^2(x^2-3x-x+3)=05x

2

(x

2

−3x−x+3)=0

5x^2(x(x-3)-1(x-3))=05x

2

(x(x−3)−1(x−3))=0

5x^2(x-1)(x-3)=05x

2

(x−1)(x−3)=0

5x^2=0,x-1=0,x-3=05x

2

=0,x−1=0,x−3=0

x=0,1,3x=0,1,3

The second derivative is

y''=20x^3-60x^2+30xy

′′

=20x

3

−60x

2

+30x

Substitute the critical values,

At x=0,

y''=20(0)^3-60(0)^2+30(0)y

′′

=20(0)

3

−60(0)

2

+30(0)

y''=0y

′′

=0

There is no maximum and no minimum value.

At x=1,

y''=20(1)^3-60(1)^2+30(1)y

′′

=20(1)

3

−60(1)

2

+30(1)

y''=20-60+30y

′′

=20−60+30

y''=-10 < 0y

′′

=−10<0

The value is maximum.

At x=0,

y''=20(3)^3-60(3)^2+30(3)y

′′

=20(3)

3

−60(3)

2

+30(3)

y''=20(27)-60(9)+90y

′′

=20(27)−60(9)+90

y''=540-540+90y

′′

=540−540+90

y''=90 > 0y

′′

=90>0

The value is minimum.

Hope it helps :)

Mark me as a brainliest!

Thank my answer ❤️

Answered by rajputdaksh17921
0

Step-by-step explanation:

Answer

To obtain the absolute maxima or minima for the function f(x)

Find f

(x) and put f

(x)=0

Given

x

5

−5x

4

+5x

3

−10

f(x)=x

5

−5x

4

+5x

3

−10

f(x)=x

5

−5x

4

+5x

3

−10

dx

df(x)

=f

(x)=5x

4

−20x

3

+15x

2

5x

4

−20x

3

+15x

2

=0

5x

2

(x−3)(x−1)=0

x=0, x=1, x=3

To find the maximum find f

′′

(x) and substitute the value of x

dx

df

(x)

=f

′′

(x)=20x

3

−60x

2

+30x

When, x=3

f

′′

(x)=20x

3

−60x

2

+30x=20(3)

3

−60(3)

2

+30(3)=90 >0

When, x=0

f

′′

(x)=20x

3

−60x

2

+30x=20(0)

3

−60(0)

2

+30(0)=0

When, x=1

f

′′

(x)=20x

3

−60x

2

+30x=20(1)

3

−60(1)

2

+30(1)=−10 <0

∴ The given function has the maximum value when x=3

Similar questions