Math, asked by bikashchandrasmile, 5 months ago

.. y' = y tan 2x, y (0) = 2.​

Answers

Answered by Anonymous
6

Given that,

 \sf \:  \dfrac{dy}{dx}  = y \times tan(2x)

When x = 0, y = 2.

The above differential equation can be solved by variable separable method.

 \implies \sf \:  \dfrac{dy}{y}  = tan(2x)dx \\  \\\implies  \displaystyle \int  \sf \:  \dfrac{dy}{y}  = \int tan(2x)dx \\  \\ \implies  \displaystyle \sf  log(y)    =   \dfrac{1}{2}   \int tan(t)dt \\  \\ \implies  \displaystyle \sf  log(y)    =   \dfrac{1}{2} log(sec2x)  +  log(k)  \\  \\  \implies  \displaystyle \sf 2 log(y)    =    log(sec2x)  +  2log(k) \\  \\  \implies \sf \: log(y {}^{2} ) = log(k {}^{2} sec2x) \\  \\  \implies \sf \: y {}^{2} cos2x = k {}^{2}  -  -  -  -  -  -  -  - (1)

We know that, when x = 0, y = 2.

Thus,

 \implies \sf \: k {}^{2}  = (2) {}^{2} cos(0) \\  \\  \implies \sf \: k = \pm 2

Putting value of k in equation (1),

 \implies \sf \: y {}^{2} cos2x = 4 \\  \\  \implies \boxed{ \boxed{ \sf y \sqrt{cos2x} =  \pm2 }}

Thus, the particular solution of the above differential equation at y(0) = 2 is y√cos2x = ± 2.

Similar questions