Math, asked by innamarygracemancio, 2 months ago

y'+y=x y(0)=3
linear equation
differential equation​

Answers

Answered by veerajagarwal
0

Answer:

Please verify my answer to the following differential equation:

y′′−xy′+y=0

Let y=∑∞n=0Cnxn, then y′=∑∞n=1nCnxn−1 and y′′=∑∞n=2n(n−1)Cnxn−2

Substituting this to the equation we get

∑n=2∞n(n−1)Cnxn−2−x∑n=1∞nCnxn−1+∑n=0∞Cnx

Answered by mathdude500
3

Working Rule :-

Let us consider a linear differential equation

\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \: \: where \: p \: and \: q \in \: f(x)

Step :- 1 :- Find Integrating Factor, I. F.

\rm :\longmapsto\:I. F. = {e}^{ \: \int p \: dx}

Step :- 2, Solution of differential equation is

\rm :\longmapsto\:y \times I. F. = \int \: (q \times I. F.)dx

Formula Used :-

\boxed{ \red{ \bf \:\:  \displaystyle \int \sf \: 1dx = x + c}}

\boxed{ \red{ \bf \:\:  \displaystyle \int \sf \:u.v \: dx =u\displaystyle \int \sf \:vdx - \displaystyle \int \sf \:\bigg(\dfrac{d}{dx}u \:\displaystyle \int \sf \:vdx\bigg)dx}}

Solution :-

Given differential equation is

\rm :\longmapsto\:y' + y = x

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} + y = x

On comparing with

\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \: \:

we get

\rm :\longmapsto\:\boxed{ \red{ \bf \:p = 1}} \\ \rm :\longmapsto\:\boxed{ \red{ \bf \:q = x}}

Now,

\rm :\longmapsto\:I. F. = {e}^{ \: \int p \: dx}

\rm :\longmapsto\:I. F. = {e}^{ \: \int 1 \: dx}

\rm :\longmapsto\:I. F. = {e}^{ x}

Hence,

Solution is given by

\rm :\longmapsto\:y \times I. F. = \int \: (q \times I. F.)dx

\rm :\longmapsto\:y \times  {e}^{x} = \int \: (x {e}^{x} )dx

\rm :\longmapsto\:y \times  {e}^{x} = x\displaystyle \int \sf \:\: {e}^{x}dx \: - \: \displaystyle \int \sf \:\bigg(\dfrac{d}{dx}x\displaystyle \int \sf \: {e}^{x}dx\bigg)dx

\rm :\longmapsto\:y {e}^{x} = x {e}^{x} -  {e}^{x}  + c

\bf\implies \:y = x - 1 + c {e}^{ - x}  -  - (1)

Now put x = 0 and y = 3, we get

\bf\implies \:3 = 0 - 1 + c {e}^{ - 0}

\bf\implies \:c = 4

Hence, equation (1) can be rewritten as

\purple{\bf\implies \:y = x - 1 + 4 {e}^{ - x}}

Similar questions