Math, asked by lakshmimamathahs, 3 months ago

(y-yx) dx + (x+xy) dy=0 solve ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:(y - xy)dx + (x + xy)dy = 0

can be rewritten as

\rm :\longmapsto\:y(1 - x)dx + x(1 + y)dy = 0

\rm :\longmapsto\:y(1 - x)dx =  -  \: x(1 + y)dy

\rm :\longmapsto\:y(x - 1)dx \:  =  \: x(1 + y)dy

\rm :\longmapsto\:\dfrac{x - 1}{x} dx = \dfrac{y + 1}{y} dy

\rm :\longmapsto\:\displaystyle\int\tt\dfrac{x - 1}{x} dx =\displaystyle\int\tt \dfrac{y + 1}{y} dy

\rm :\longmapsto\:\displaystyle\int\tt\bigg(1 - \dfrac{1}{x}  \bigg)dx = \:\displaystyle\int\tt\bigg(1 +  \dfrac{1}{y}  \bigg)dy

\rm :\longmapsto\:x -  log(x) = y +  log(y) + c

\red{\bigg \{ \because \: \displaystyle\int\tt \: k \: dx \:  =  \: kx \:   + \: c\bigg \}} \\ \red{\bigg \{ \because \: \displaystyle\int\tt \: \dfrac{1}{x} =  log(x)  + c\bigg \}}

Hence,

Solution of

\rm :\longmapsto\:(y - xy)dx + (x + xy)dy = 0

is

\rm :\longmapsto\:x -  log(x) = y +  log(y) + c

Similar questions