Math, asked by keerthi577, 4 months ago

(y²+2y) dx+(z²+zx) dy+(y²-xy) dz=0​

Answers

Answered by reddysandhya39322
1

Answer:

Solution of Pfaffian Differential equation in three variables.

Verify the Pfaffian Differential equation

(y^2+yz)dx+(xz+z^2)dy+(y^2-xy)dz=0(y

2

+yz)dx+(xz+z

2

)dy+(y

2

−xy)dz=0

is integrable and find its prmitive.

The necessary and sufficient condition for iintegrability is

\bm{X}\cdot curl \bm{X}=0X⋅curlX=0

\bm{X}=(y^2+yz,xz+z^2,y^2-xy)X=(y

2

+yz,xz+z

2

,y

2

−xy) so that

\bm{ \nabla}\times\bm{X}=\begin{vmatrix} \bf{i} & \bf{j} & \bf{k} \\ {\partial\over \partial x} & {\partial\over \partial y} & {\partial\over \partial z} \\ y^2+yz & xz+z^2 & y^2-xy \end{vmatrix}=∇×X=

i

∂x

y

2

+yz

j

∂y

xz+z

2

k

∂z

y

2

−xy

=

=(2y-x-x-2z){\bf{i}}+(y+y){\bf{j}} + (z-2y-z){\bf{k}}==(2y−x−x−2z)i+(y+y)j+(z−2y−z)k=

=(2y-2x-2z){\bf{i}}+(2y){\bf{j}} + (-2y){\bf{k}}=(2y−2x−2z)i+(2y)j+(−2y)k

\bm{X}\cdot (\bm{ \nabla}\times\bm{X})=2y^3-2xy^2-2y^2z+2y^2z-X⋅(∇×X)=2y

3

−2xy

2

−2y

2

z+2y

2

z−

-2xyz-2yz^2+2xyz+2yz^2-2y^3+2xy^2=0−2xyz−2yz

2

+2xyz+2yz

2

−2y

3

+2xy

2

=0

Thus the given equation is integrable.

Solve by Inspection

y(y+z)dx+z(x+z)dy+y(y-x)dz=0y(y+z)dx+z(x+z)dy+y(y−x)dz=0

Or

y(y+z)dx+y(y+z)dz-y(y+z)dz+y(y+z)dx+y(y+z)dz−y(y+z)dz+

+z(x+z)dy+y(x+z)dy-y(x+z)dy++z(x+z)dy+y(x+z)dy−y(x+z)dy+

+y(y-x)dz=0+y(y−x)dz=0

Or

y(y+z)d(x+z)+(y+z)(x+z)dy-y(y+z)d(x+z)+(y+z)(x+z)dy−

-ydz(y+z-y+x)-y(x+z)dy=0−ydz(y+z−y+x)−y(x+z)dy=0

Or

y(y+z)d(x+z)+(y+z)(x+z)dy-y(x+z)d(y+z)=0y(y+z)d(x+z)+(y+z)(x+z)dy−y(x+z)d(y+z)=0

{d(x+z) \over x+z}+{dy\over y}-{d(y+z) \over y+z}=0

x+z

d(x+z)

+

y

dy

y+z

d(y+z)

=0

The complete primitive is given as

y(x+z)=c(y+z)y(x+z)=c(y+z)

Similar questions