English, asked by shree85, 1 year ago

yar integration sikhado Yar ki toh
kardo iska Integration bhaiyo
1)1/sinx+cosx+1​

Answers

Answered by Anonymous
1

Well, if you only have:

    1 + Sin[x] + Cos[x]

    -------------------

    1 - Sin[x] + Cos[x]

and are told to simplify, here's what to try:  

First, I performed long division on it, so I got:

              2 Sin[x]

    1 + -------------------

        1 - Sin[x] + Cos[x]

But then I didn't know what to do with the remainder.  So I started  

over, and recognized that you could group the terms like this:

    (1+Cos[x]) + Sin[x]

    -------------------

    (1+Cos[x]) - Sin[x].

So the numerator is of a form like A+B, and the denominator is like  

A-B. We multiply the numerator and denominator by A+B, so that the  

denominator becomes a difference of squares, A^2 - B^2.  We get:

    ((1+Cos[x]) + Sin[x])^2    

    -----------------------  

    (1+Cos[x])^2 - Sin[x]^2        

             (1+Cos[x])^2 + 2(1+Cos[x])Sin[x] + Sin[x]^2

           = -------------------------------------------

                1 + 2 Cos[x] + Cos[x]^2 - Sin[x]^2

which is kind of messy, until you notice the trig identity:

    1 - Sin[x]^2 = Cos[x]^2

and complete expanding the numerator.  This gives:

    1 + 2 Cos[x] + Cos[x]^2 + 2 Sin[x] + 2 Sin[x]Cos[x] + Sin[x]^2

    --------------------------------------------------------------

                       2 Cos[x] + 2 Cos[x]^2

           2 + 2(Cos[x] + Sin[x] + Sin[x]Cos[x])

         = -------------------------------------

                   2 Cos[x](1 + Cos[x])

and when we cancel out the 2's, we get:

    1 + Cos[x] + Sin[x] + Sin[x]Cos[x]

    ---------------------------------- .

           Cos[x](1 + Cos[x])

But notice the numerator can be factored into (1+Sin[x])(1+Cos[x]),  

and so we can cancel out a common factor of 1+Cos[x] to give the final  

result:

    1 + Sin[x]

    ---------- .

      Cos[x]

Similar questions