Math, asked by BrainlyHelper, 1 year ago

यदि 3 cot A = 4, तो जाँच कीजिए कि  \frac{1-tan^{2} A }{1+tan^{2} A} =cos^{2} A-sin^{2} A है या नहीं।

Answers

Answered by SanjeevKumarmeena
3
so both are equal as I hope this will help you
Attachments:
Answered by hukam0685
6
यदि 3 cot A = 4
तो
cot \: A= \frac{4}{3} \\ \\ tan \: A = \frac{1}{cot\:A}  \\\\ tan \: A = \frac{3}{4}

 \frac{1 - {tan}^{2}A}{1 + {tan}^{2} A} \\ \\ = \frac{1 -( { \frac{3}{4} })^{2} }{1 + ( { \frac{3}{4} )}^{2} } \\ \\ = \frac{1 - \frac{9}{16} }{1 + \frac{9}{16} } \\ \\ = \frac{7}{25}

दी हुई समकोण त्रिभुज में आधार 4 इकाई वह लंब 3 इकाई तो कर्ण की लंबाई होगी 5 इकाई; पाइथागोरस प्रमेय

sin \: A = \frac{3}{5} \\ \\ cos \: A = \frac{4}{5} \\ \\ {cos}^{2} A - {sin}^{2} A = ({ \frac{4}{5} })^{2} - ({ \frac{3}{5} })^{2} \\ \\ = \frac{16}{25} - \frac{9}{25} \\ \\ = \frac{7}{25}

LHS = RHS
Similar questions