Math, asked by jayrajbairagi82, 4 months ago

यदि √5tanA = 5sinA है, तो (sin^2A- cos^2A) का मान क्या है​

Answers

Answered by tennetiraj86
2

Step-by-step explanation:

Given:-

√5tanA = 5 sinA

To find:-

The value of Sin^2A-Cos^2A

Solution:-

Given that

√5tanA = 5 sinA

=>√5 SinA/CosA=5 SinA

On cancelling SinA both sides then

=>√5/CosA=5

=>√5=5CosA

=>5CosA=√5

=>CosA=√5/5

=>CosA=√5/(√5×√5)

=>CosA=1/√5

On squaring both sides

=>Cos^2A=1/5-----(1)

=>1-Cos^2A=1-(1/5)

=>Sin^2A=(5-1)/5

=>Sin^2A=4/5-----(2)

Now Sin^2A-Cos^2A

from (1)&(2)

=>(4/5)-(1/5)

=>(4-1)/5

=>3/5

Answer:-

The value of Sin^2A-Cos^2A=3/5

Used formulae:-

  • Sin^2A+Cos^2A=1
  • TanA=SinA/CosA
Answered by amitsharma777222999
0

Answer:

√5 sinA/cosA=5 sinA

cosA=1/√5

sinA=√1-cos^2A

=√1-1/5

√4/5=2/√5

sin^2A=4/5

cos^2A=1/5

sin^2A-cos^2A=4/5-1/5

=3/5

Similar questions