यदि √5tanA = 5sinA है, तो (sin^2A- cos^2A) का मान क्या है
Answers
Answered by
2
Step-by-step explanation:
Given:-
√5tanA = 5 sinA
To find:-
The value of Sin^2A-Cos^2A
Solution:-
Given that
√5tanA = 5 sinA
=>√5 SinA/CosA=5 SinA
On cancelling SinA both sides then
=>√5/CosA=5
=>√5=5CosA
=>5CosA=√5
=>CosA=√5/5
=>CosA=√5/(√5×√5)
=>CosA=1/√5
On squaring both sides
=>Cos^2A=1/5-----(1)
=>1-Cos^2A=1-(1/5)
=>Sin^2A=(5-1)/5
=>Sin^2A=4/5-----(2)
Now Sin^2A-Cos^2A
from (1)&(2)
=>(4/5)-(1/5)
=>(4-1)/5
=>3/5
Answer:-
The value of Sin^2A-Cos^2A=3/5
Used formulae:-
- Sin^2A+Cos^2A=1
- TanA=SinA/CosA
Answered by
0
Answer:
√5 sinA/cosA=5 sinA
cosA=1/√5
sinA=√1-cos^2A
=√1-1/5
√4/5=2/√5
sin^2A=4/5
cos^2A=1/5
sin^2A-cos^2A=4/5-1/5
=3/5
Similar questions