यदि 9 a ^ 2 + 4b ^ 2 + c ^ 2 + 21 = 4 (3a + b-2c) तो (9a + 4b-c) का मान है
Answers
Answered by
3
9a + 4b-c = 12 if 9a² + 4b² + c² + 21 = 4 (3a + b - 2c)
Step-by-step explanation:
9a² + 4b² + c² + 21 = 4 (3a + b - 2c)
= 9a² - 12a + 4b² - 4b + c² + 8c + 21 = 0
=> (3a - 2)² - 4 + (2b - 1)² - 1 + (c + 4)² - 16 + 21 = 0
=> (3a - 2)² + (2b - 1)² + (c + 4)² = 0
=> a = 2/3
b = 1/2
c = -4
9a + 4b - c = 9(2/3) + 4(1/2) - (-4)
= 6 + 2 + 4
= 12
Learn more:
4a^2+9b^2+16c^2+1/9a^2+1/16b^2+25c^2=133/30.
https://brainly.in/question/13193696
If 9a^2 + 16b^2 + c^2 + 25 = 24 (a + b) then find 3a+4b+5c.
brainly.in/question/12371255
Similar questions