Hindi, asked by rajendrasahu62433, 5 months ago

यदि a:b=c:d हो तो k नियम दारा सिंधद कीजिए।
a2+c2. ac
-------------- = -------
b2+d2. bd​

Answers

Answered by pulakmath007
16

समाधान :

दिया हुआ :

a : b = c : d

सिद्ध करने के लिए :

 \displaystyle \sf{ \frac{ {a}^{2} +  {c}^{2}  }{ {b}^{2} +  {d}^{2}  }  =  \frac{ac}{cd}  \: }

प्रमाण :

यहाँ यह दिया गया है कि

 \sf{a : b = c : d}

 \displaystyle \sf{  \frac{a}{b} =  \frac{c}{d} = k  \:(say) }

 \therefore \:  \sf{ a = bk} और  \sf{c = dk \: }

LHS

 \displaystyle \sf{ \frac{ {a}^{2} +  {c}^{2}  }{ {b}^{2} +  {d}^{2}  }  \: }

 =  \displaystyle \sf{ \frac{ {(bk)}^{2} +  {(dk)}^{2}  }{ {b}^{2} +  {d}^{2}  }   \: }

 =  \displaystyle \sf{ \frac{ {b}^{2}  {k}^{2} +  {d}^{2} {k}^{2}   }{ {b}^{2} +  {d}^{2}  }   \: }

 =  \displaystyle \sf{ \frac{ {k}^{2} ( {b}^{2} +  {d}^{2})  }{ {b}^{2} +  {d}^{2}  }   \: }

 =  \displaystyle \sf{ {k}^{2}    \: }

RHS

 =   \displaystyle \sf{ \frac{ac}{bd}    \: }

 =   \displaystyle \sf{ \frac{bk.dk}{bd}    \: }

 =   \displaystyle \sf{ \frac{bd{k}^{2} }{bd}    \: }

 =   \displaystyle \sf{ {k}^{2} }

LHS = RHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

x+ y = 16, x – y = 4 Find the Solution of the following pair of linear equations. x+ y = 16, x – y = 4 निम्नलिखित रैखिक ...

https://brainly.in/question/28615437

Similar questions