Math, asked by shikhardhurve685, 4 months ago

*यदि एक घन के विकर्ण की लंबाई 12√3 सेमी है, तो इसके सम्पूर्ण पृष्ठ का क्षेत्रफल होगा:*

1️⃣ 864 सेमी²
2️⃣ 1244 सेमी²
3️⃣ 676 सेमी²
4️⃣ 564 सेमी²​

Answers

Answered by MaheswariS
2

If the length of the diagonal of a cube is 12√3 cm, then the area of ​​its entire surface will be

\underline{\textbf{Given:}}

\textsf{Length of the diagonal of a cube is}\;\mathsf{12\sqrt{3}\,cm}

\underline{\textbf{To find:}}

\textsf{The area of enttire surface of the cube}

\mathsf{}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\boxed{\begin{minipage}{8cm}$\\\mathsf{Length\;of\;the\;diagonal\;of\;a\;cube\;of\;side\;a\;is\;a\sqrt{3}\,units}\\\\\mathsf{Suface\;area\;of\;a\;cube\;side\;a\;is\;6a^2}\\$\end{minipage}}

\mathsf{Consider,}

\mathsf{Length\;of\;the\;diagonal\;of\;the\;cube\;is\;12\sqrt{3}\;cm}

\implies\mathsf{a\sqrt{3}=12\sqrt{3}}

\implies\boxed{\mathsf{a=12\;cm}}

\mathsf{Now,}

\mathsf{Entire\;surface\;area\;of\;the\;cube}

\mathsf{=6a^2}

\mathsf{=6{\times}12^2}

\mathsf{=6{\times}144}

\mathsf{=864\;cm^2}

\therefore\boxed{\mathsf{Entire\;surface\;area\;of\;the\;cube=864\,cm^2}}

Similar questions