यदि किसी समान्तर श्रेणी के प्रथम n पदों का योग cn? है, तब इन n पदों के वर्गों का योग निम्न है [IIT-JEE - 2009,Paper-2, (3,-1),80] (A) (4n' - 1)c2 n(4n +1) (B) n(4n2 - 1) n(4n? +1) 6 (C) 3 (D) 3 6 answer this question ❓
Answers
Answered by
1
If the sum of first n terms of an AP is cn2, then the sum of squares of these n terms is
(1) n(4n2-1)c2/6
(2) n(4n2+1)c2/3
(3) n(4n2-1)c2/3
(4) none of these
Solution:
Given Sn = cn2
Sn-1 = c(n-1)2
= cn2+c-2cn
Tn = Sn-Sn-1
Tn = 2cn – c
Tn2 = (2cn-c)2
= 4c2n2+c2-4c2n
Sum of squares = ∑Tn2
= c2[4 ∑n2+∑1 -4∑n]
= [4c2(n(n+1)(2n+1)/6] + nc2 – (2c2n(n+1)
= nc2(4n2+6n+2+3-6n-6)/3
= nc2(4n2-1)/3
= n(4n2-1)c2/3
Hence option (3) is the answer
please mark me as brainlist
Similar questions