Physics, asked by kapil7986, 6 months ago

यदि log10 2=0.3010और log10 3=0.4771 हो तो मान ज्ञात कीजिए log10√8​

Answers

Answered by Anonymous
1

Given:

 \rm log_{10}2 = 0.3010 \\  \rm log_{10}3 = 0.4771

To Find:

 \rm log_{10} \sqrt{8}

Answer:

 \rm \implies log_{10} \sqrt{8}   \\  \\  \rm \implies log_{10} {8}^{ \frac{1}{2} }  \\  \\  \rm \implies log_{10} {2}^{ \frac{3}{2} }  \\  \\  \rm \implies  \dfrac{3}{2} log_{10}2 \\  \\  \rm \implies  \dfrac{3}{2}  \times 0.3010 \\  \\ \rm \implies 1.5 \times 0.3010 \\  \\  \rm \implies 0.4515

 \therefore  \boxed{\mathfrak{log_{10} \sqrt{8} = 0.4515}}

Answered by Anonymous
305

♣ Qᴜᴇꜱᴛɪᴏɴ :

ᴠᴀʟᴜᴇ ᴏꜰ ʟᴏɢ₁₀√8​

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\bf{\log _{10}\left(\sqrt{8}\right)=\frac{3}{2}\log _{10}\left(2\right)\quad \left(\mathrm{Decimal:\quad }\:0.45154\dots \right)}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ :

_____________________________

→ ꜰɪʀꜱᴛ ꜱᴏʟᴠᴇ ꜰᴏʀ \bf{\sqrt{8}}

\mathrm{Prime\:factorization\:of\:}8:\quad 2^3

\sqrt{8}=\sqrt{2^3}

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^b\cdot \:a^c

2^3=2^2\cdot \:2

=\sqrt{2^2\cdot \:2}

\mathrm{Apply\:radical\:rule}:\quad \sqrt{ab}=\sqrt{a}\sqrt{b},\:\quad \:a\ge 0,\:b\ge 0

\sqrt{2^2\cdot \:2}=\sqrt{2^2}\sqrt{2}

=\sqrt{2^2}\sqrt{2}

\mathrm{Apply\:radical\:rule}:\quad \sqrt{a^2}=a,\:\quad \:a\ge 0

\sqrt{2^2}=2

=2\sqrt{2}

\bf{\log _{10}\left(\sqrt{8}\right) =\log _{10}\left(2\sqrt{2}\right)}

_____________________________

\mathrm{Apply\:log\:rule}:\quad \log _a\left(xy\right)=\log _a\left(x\right)+\log _a\left(y\right)

\log _{10}\left(2\sqrt{2}\right)=\log _{10}\left(2\right)+\log _{10}\left(\sqrt{2}\right)

=\log _{10}\left(2\right)+\log _{10}\left(\sqrt{2}\right)

_____________________________

\log _{10}\left(\sqrt{2}\right)=\frac{1}{2}\log _{10}\left(2\right)

\mathrm{Rewrite\:\log _{10}\left(\sqrt{2}\right)\:as}

=\log _{10}\left(2^{\frac{1}{2}}\right)

\mathrm{Apply\:log\:rule\:}\log _a\left(x^b\right)=b\cdot \log _a\left(x\right),\:\quad \mathrm{\:assuming\:}x\:\ge \:0

=\frac{1}{2}\log _{10}\left(2\right)

\bf{=\log _{10}\left(2\right)+\frac{1}{2}\log _{10}\left(2\right)}

_____________________________

\mathrm{Factor\:out\:common\:term\:}\log _{10}\left(2\right)

=\log _{10}\left(2\right)\left(1+\frac{1}{2}\right)

_____________________________

1+\frac{1}{2}=\frac{3}{2}

=\frac{3}{2}\log _{10}\left(2\right)

_____________________________

\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}

=\frac{3\log _{10}\left(2\right)}{2}

_____________________________

\boxed{\bf{= 0.45154\dots }}

Similar questions