Math, asked by BrainlyMathHelper, 1 year ago

यदि त्रिभुज ABC में a²,b²,c² समांतर श्रेणी में हो तो सिद्ध कीजिए cotA, cotB, cotC कि समांतर श्रेणी(A.P) में होंगे ?

Answers

Answered by SAngela
98
\bold{Hay\:Mate}


°•° a²,b²,c² समांतर श्रेणी में है


•°• b²-a² = c²-b²


sine नियम के अनुसार


=> sin²B - sin²A = sin²C -sin²B


( °•° A + B + C = π )


=> sin(A+B) sin(B-A) = sin(C+B) sin(C-B)


=> sinC sin(B-A) = sinA sin(C-B)


=> sinC (sinB cosA - cosB SinA) = sinA (sinC cosB - cosC sinB)


दोनों पक्षों में sinA sinB sinC भाग देने पर


=> cotA - cotB = cotB - cotC


अतः cotA, cotB, cotC, समांतर श्रेणी में हुए


\bold{I\:hope\:its\:help\:you}


Anonymous: sis fanta santa Answer...xD... really faddu Answer
TANU81: Great ^_^
VickyskYy: TipTop..!!!
SAngela: thankx to all :-)
Answered by Swarnimkumar22
98
\bold{Thanks\:For\:Asking\:Question}


According to the question we know that A. P reasons( b²-a² = c²-b²)

now, using the sine rules

=> sin²B - sin²A = sin²C -sin²B

=> sin(A+B) sin(B-A) = sin(C+B) sin(C-B)

=> sinC sin(B-A) = sinA sin(C-B)

=> sinC (sinB cosA - cosB SinA) = sinA (sinC cosB - cosC sinB)

dividing both sides with sinA sinB sinC

cotA - cotB = cotB - cotC

I hope it's help you


Anonymous: Bhai Fantastic Answer ^_^ Keep going on
Swarnimkumar22: thanks di
VickyskYy: nyc explanation
venky2020: nice explanation
Similar questions