यदि त्रिभुज ABC में a²,b²,c² समांतर श्रेणी में हो तो सिद्ध कीजिए cotA, cotB, cotC कि समांतर श्रेणी(A.P) में होंगे ?
Answers
Answered by
98
°•° a²,b²,c² समांतर श्रेणी में है
•°• b²-a² = c²-b²
sine नियम के अनुसार
=> sin²B - sin²A = sin²C -sin²B
( °•° A + B + C = π )
=> sin(A+B) sin(B-A) = sin(C+B) sin(C-B)
=> sinC sin(B-A) = sinA sin(C-B)
=> sinC (sinB cosA - cosB SinA) = sinA (sinC cosB - cosC sinB)
दोनों पक्षों में sinA sinB sinC भाग देने पर
=> cotA - cotB = cotB - cotC
अतः cotA, cotB, cotC, समांतर श्रेणी में हुए
Anonymous:
sis fanta santa Answer...xD... really faddu Answer
Answered by
98
According to the question we know that A. P reasons( b²-a² = c²-b²)
now, using the sine rules
=> sin²B - sin²A = sin²C -sin²B
=> sin(A+B) sin(B-A) = sin(C+B) sin(C-B)
=> sinC sin(B-A) = sinA sin(C-B)
=> sinC (sinB cosA - cosB SinA) = sinA (sinC cosB - cosC sinB)
dividing both sides with sinA sinB sinC
cotA - cotB = cotB - cotC
I hope it's help you
Similar questions