Math, asked by sujan3930, 9 months ago

यदि  A= \begin{bmatrix}  1 & 2  \\  4 & 2  \end{bmatrix} तो दिखाइए कि |2A| = 4|A|

Answers

Answered by amitnrw
0

Given :    A= \begin{bmatrix}  1 & 2  \\  4 & 2  \end{bmatrix}

To find :  दिखाइए कि |2A| = 4|A|

Solution :

A= \begin{bmatrix}  1 & 2  \\  4 & 2  \end{bmatrix}

2A= \begin{bmatrix}  2 & 4  \\  8 & 4  \end{bmatrix}

हमें पता है की

A =  \begin{bmatrix}  a & b \\  c & d \end{bmatrix}

Det A = | A |  = Δ  =  ad  - bc  

A= \begin{bmatrix}  1 & 2  \\  4 & 2  \end{bmatrix}

a = 1

b = 2

c = 4

d = 2

Det A = | A |  =  1 * 2 - 2 * 4

=>   | A |  =  2 - 8

=>  | A |  =   - 6

2A= \begin{bmatrix}  2 & 4  \\  8 & 4  \end{bmatrix}

a = 2

b = 4

c = 8

d = 4

Det 2A = | 2A |   = 2 * 4  - 4 * 8

| 2A | = 8 - 32

| 2A |  =  - 24

=> | 2A |  =  4  ( - 6 )

=> | 2A |  =  4  |A|

QED

इति  सिद्धम

और सीखें

"निम्नलिखित सारणिकों के मान ज्ञात कीजिए

(i)  -3 & -1 & 2  \\  0 & 0 & -1 \\ 3 & -5 & 0  

https://brainly.in/question/16385736

मान ज्ञात कीजिए

https://brainly.in/question/16385407

"मान ज्ञात कीजिए ।

  \begin{bmatrix}  2 & 4  \\  -5 & -1  \end{bmatrix}"

https://brainly.in/question/16385413

Similar questions