Math, asked by PragyaTbia, 1 year ago

यदि ^{n-1}P_3 : \,^{n}P_4 = 1 : 9 तो n ज्ञात कीजिए।

Answers

Answered by hukam0685
3
यदि ^{n-1}P_3 : \,^{n}P_4 = 1 : 9 तो n ज्ञात कीजिए।

हल:

जैसा कि हम जानते हैं,

^{n}P_r = \frac{n!}{(n - r)!} \\ \\ ^{n-1}P_3 = \frac{(n - 1)!}{(n - 1 - 3)!} \\ \\ = \frac{(n - 1)!}{(n - 4)!}
^{n}P_4 = \frac{n!}{n - 4!} \\ \\
 \frac{^{n-1}P_3}{^{n}P_4} = \frac{1}{9} \\ \\ \frac{(n - 1)!}{n!} = \frac{1}{9} \\ \\ \frac{(n - 1)!}{n(n - 1)!} = \frac{1}{9} \\ \\ \frac{1}{n} = \frac{1}{9} \\ \\ n = 9 \\ \\
Answered by Swarnimkumar22
4

हल :-

दिया है

 {}^{n - 1} P _{3} : {}^{n} P _{4}  \\  \\  = 1 : 9 \\  \\  \\  \implies \:  \frac{(n - 1)! }{(n - 1 - 3)!} : \frac{n! }{(n - 4)! }  = 1 : 9 \\  \\  \\  \implies \:  \frac{(n - 1)!}{n - 4)!}  \times  \frac{(n - 4)!}{n!}  =  \frac{1}{9}  \\  \\  \\  \implies \:  \frac{(n - 1)!}{n(n - 1)!}  =  \frac{1}{9}  \\  \\  \\   \implies \: n = 9

Similar questions