Math, asked by krishan427384kk, 11 months ago

यदि
x +  \frac{1}{x}  = 7 \: then \:  {x}^{3}  +  \frac{1}{ {x}^{3} }
का मान ज्ञात करो।​

Answers

Answered by ankitsaini76216
2

322

Step-by-step explanation:

we know that:

(a + b)3 = a3 + b3 +3ab(a+b)

(x +  \frac{1}{x})^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) \\ (x +  \frac{1}{x})^{3}   =  {x}^{3}  +  \frac{1}{x^3}  + 3(x +  \frac{1}{x})...(1)\\put  \\ x +  \frac{1}{x}   = 7   in   equation..(1)\\  {7}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 7 \\ 343 =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 21 \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 343 - 21 \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 322

I hope this help you

Answered by Anonymous
13

Answer:

\large\boxed{\sf{322}}

Step-by-step explanation:

Given that,

x +  \dfrac{1}{x}  = 7 \:  \:  \:   \:  \:  \: ............(1)

Squaring both the sides, we get,

 =  >  {(x +  \dfrac{1}{x} )}^{2}  =  {7}^{2}  \\  \\  =  >  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 = 49 \\  \\  =  >  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   -  1 = 46 \:  \:  \:  \:  \: .......(2)

Now, to find the value of,

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }

We know that,

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = (x +  \dfrac{1}{x} )( {x}^{2}    - 1 +  \dfrac{1}{ {x}^{2} } )

Now, substitute the values from (1) and (2),

Therefore we will get,

 =  >  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 7 \times 46 \\  \\  =  > {x}^{3}   +  \dfrac{1}{ {x}^{3} }  = 322

Hence, the required Answer is 322.

Similar questions