Math, asked by Krishy8701, 1 year ago

यदि x-\iota y = \sqrt\dfrac{a - \iota b}{c - \iota d} , तो सिद्ध कीजिए की (x^2 + y^2)^2 = \dfrac{a^2 + b^2}{c^2 + d^2}.

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

प्रश्नानुसार  

x-\iota y = \sqrt\dfrac{a - \iota b}{c - \iota d}

दोनों पक्षों का वर्ग करने पर  

(x-iy)^{2}=(\sqrt{\frac{a-ib}{c-id} } )^{2} =\frac{a-ib}{c-id} ......(i)

इसी प्रकार    

(x+iy)^{2}=(\sqrt{\frac{a+ib}{c+id} } )^{2} =\frac{a+ib}{c+id} ......(ii)

समीकरण  (i) व  (ii)  का गुणा करने पर  

(x^{2}+y^{2})=\frac{a-ib}{c-id}*\frac{a+ib}{c+id}\\\\(x^{2}+y^{2})=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}

अतः  

(x^{2}+y^{2})=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}

Similar questions