Math, asked by minabai7019, 9 months ago

यदि वर्ग समीकरण 9x²-kx+16=0 के मूल समान है तो k का मान ज्ञात कीजिए

Answers

Answered by sonu184293
29
b^2-4ac=0
(-k)^2-4*9*16=0
K=24
Answered by pulakmath007
16

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

The value of k when the roots of the quadratic equation 9x²-kx+16=0 are equal

FORMULA TO BE IMPLEMENTED

Two roots of the quadratic equation

 \sf{a {x}^{2}   + b x+ c = 0\: }

will be equal if

 \sf{Discriminant=  D = {b}^{2}  - 4ac = 0 }

CALCULATION

The given Quadratic Equation is

 \sf{9 {x}^{2} - kx + 16 = 0  \: }

 \sf{comparing \: with \:  \: a {x}^{2}   + b x+ c = 0\: } \:  \: we \: get

 \sf{a = 9 \: ,  \: b = - k \: ,  \: c= 16}

  \therefore \: \sf{Discriminant=  D = {b}^{2}  - 4ac  }

 =  \sf{ {( - k)}^{2}  - 4 \times 9 \times 16 \: }

 =  \sf{ { k}^{2}  - 4 \times 9 \times 16 \: }

Since the roots are equal

\sf{ { k}^{2}  - 4 \times 9 \times 16  = 0\: }

 \implies \: \sf{ { k}^{2}   =  4 \times 9 \times 16  \: }

 \implies \: \sf{ { k}   =  \pm \: ( 2 \times 3\times 4)  \: }

 \implies \: \sf{ { k}   =  \pm  \:  \: 24\: }

RESULT

 \boxed{ \sf{ \: k \:  =  \pm \:  \: 24 \:  \: }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the remainder

when x³-ax²+6x-a is divided by x - a.

https://brainly.in/question/5714646

Similar questions