Math, asked by tatsat1982, 1 year ago

यदि x2+1/x2=82/9 तो x3-1/x3 का मान ज्ञात करो

Answers

Answered by nickkaushiknick
23

Hope the solution attached will help you.


Attachments:
Answered by pinquancaro
20

Answer:

x^3+\frac{1}{x^3}=\frac{728}{27}

Step-by-step explanation:

Given : x^2+\frac{1}{x^2}=\frac{82}{9}

To find : x^3+\frac{1}{x^3} ?

Solution :

We know that,

(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2\times x\times \frac{1}{x}

Substitute the given value,

(x-\frac{1}{x})^2=\frac{82}{9}-2

(x-\frac{1}{x})^2=\frac{64}{9}

Taking root both side,

x-\frac{1}{x}=\frac{8}{3}

Applying cubic formula,

x^3+\frac{1}{x^3}=(x-\frac{1}{x})(x^2+\frac{1}{x^2}+1)

x^3+\frac{1}{x^3}=(\frac{8}{3})(\frac{82}{9}+1)

x^3+\frac{1}{x^3}=(\frac{8}{3})(\frac{91}{9})

x^3+\frac{1}{x^3}=\frac{728}{27}

Therefore, x^3+\frac{1}{x^3}=\frac{728}{27}

Similar questions