Math, asked by krishnay1875, 7 months ago

यदि x3 + y3 = 35 और xy = 6, x> y, तो (x -y) का
मान होगा
(a) 1
(b) 2
(c)3
(d) उपर्युक्त में से कोई नहीं​

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\mathsf{x^3+y^3=35,\;\;xy=6}

\underline{\textsf{To find:}}

\textsf{The value of x-y}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{x^3+y^3=35}\;.......(1)

\mathsf{y=\dfrac{6}{x}}\;......(2)

\textsf{Using (2) in (1), we get}

\mathsf{x^3+(\dfrac{6}{x})^3=35}\;

\mathsf{x^3+\dfrac{216}{x^3}=35}\;

\mathsf{\dfrac{x^6+216}{x^3}=35}\;

\mathsf{x^6+216=35x^3}

\mathsf{x^6-35x^3+216=0}

\mathsf{x^6-27x^3-8x^3+216=0}

\mathsf{x^3(x^3-27)-8(x^3-27)=0}

\mathsf{(x^3-8)(x^3-27)=0}

\begin{array}{c|c}\mathsf{x^3-8=0}&\mathsf{x^3-27=0}\\&\\\mathsf{x^3=8}&\mathsf{x^3=27}\\&\\\mathsf{x^3=2^3}&\mathsf{x^3=3^3}\\&\\x=2&x=3\\&\\\textsf{when x=2}&\textsf{when x=3}\\&\\\mathsf{y=\dfrac{6}{2}=3}&\mathsf{y=\dfrac{6}{3}=2}\end{array}

\textsf{But}\;\mathsf{x\,>\,y}

\implies\textsf{x=3 and y=2}

\textsf{Now, x-y=3-2=1}

\therefore\textsf{The value of x-y is 1}

\implies\textsf{Option (a) is correct}

Similar questions