Math, asked by ashtiw, 1 year ago

यदि y = /sinx+y , तो y =​

Attachments:

Answers

Answered by ihrishi
0

Answer:

y =  \sqrt{sinx + y}  \\  \therefore \: y \:   = {(sinx + y)}^{ \frac{1}{2} }  \\ differentiating \: w.r.t.x \: on \: both \: \\  sides. \\  \frac{dy}{dx}  =  \frac{d}{dx} {(sinx + y)}^{ \frac{1}{2} } \\  =  \frac{1}{2} {(sinx + y)}^{ -  \frac{ 1}{2} } \frac{d}{dx} {(sinx + y)} \\  =  \frac{1}{{2(sinx + y)}^{ \frac{ 1}{2} }} (cosx +  \frac{dy}{dx} ) \\  =  \frac{1}{2 \sqrt{sinx + y} } (cosx +  \frac{dy}{dx} ) \:  \\ 2 \sqrt{sinx + y} \frac{dy}{dx}  = cosx +  \frac{dy}{dx}  \\ 2 \sqrt{sinx + y} \frac{dy}{dx}  - \frac{dy}{dx} = cosx \\ (2 \sqrt{sinx + y}   - 1)\frac{dy}{dx} = cosx \\  \frac{dy}{dx}  =  \frac{cosx}{2 \sqrt{sinx + y}   - 1}  \\

Similar questions