Physics, asked by anmoldhillon220, 2 months ago

ydx + (x y +x-3y) dy=0
Solve The differential eqn by
Integrating factor​

Answers

Answered by shadowsabers03
6

We are given to solve the differential equation,

\longrightarrow y\ dx+(xy+x-3y)\ dy=0

Dividing by dy,

\longrightarrow y\ \dfrac{dx}{dy}+xy+x-3y=0

\longrightarrow y\ \dfrac{dx}{dy}+x+(x-3)y=0

Dividing by y,

\longrightarrow\dfrac{dx}{dy}+\dfrac{x}{y}+x-3=0

\longrightarrow\dfrac{dx}{dy}+x\left(1+\dfrac{1}{y}\right)=3

Now we have a first order linear differential equation of the form,

\longrightarrow\dfrac{dx}{dy}+x\cdot P(y)=Q(y)

where,

  • P(y)=1+\dfrac{1}{y}
  • Q(y)=3

So,

\displaystyle\longrightarrow\int P(y)\ dy=\int\left(1+\dfrac{1}{y}\right)\ dy

\displaystyle\longrightarrow\int P(y)\ dy=y+\log|y|

Then integrating factor,

\displaystyle\longrightarrow IF=e^{\int P(y)\ dy}

\displaystyle\longrightarrow IF=e^{y+\log|y|}

\displaystyle\longrightarrow IF=ye^y

The solution of the differential equation is given by,

\displaystyle\longrightarrow x\cdot IF=\int Q(y)\cdot IF\ dy

\displaystyle\longrightarrow xye^y=\int3ye^y\ dy

\displaystyle\longrightarrow xye^y=3\left[ye^y-\int e^y\ dy\right]

\displaystyle\longrightarrow xye^y=3\left(ye^y-e^y\right)+C

\displaystyle\longrightarrow xye^y=3e^y\left(y-1\right)+C

\displaystyle\longrightarrow\underline{\underline{xy=3\left(y-1\right)+Ce^{-y}}}

Similar questions