Math, asked by venuvenkaAnusha, 2 months ago

ydx-xdy+3x^2y^2e^x^3 dx=0​

Answers

Answered by mathdude500
2

Given Question :-

Solve the differential equation

\rm :\longmapsto\:ydx - xdy +  {3x}^{2} {y}^{2} {( {e}^{ {x}^{3} })}dx = 0

Formula Used :-

\boxed{ \red{ \bf \:\dfrac{d}{dx}\dfrac{x}{y} = \dfrac{ydx - xdy}{ {y}^{2} }}}

Solution :-

\rm :\longmapsto\:ydx - xdy +  {3x}^{2} {y}^{2} {( {e}^{ {x}^{3} })}dx = 0

\rm :\longmapsto\:(ydx - xdy)  =  -  {3x}^{2} {y}^{2} {( {e}^{ {x}^{3} })}dx

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \red{ \bf \:Divide  \: by \:  {y}^{2}, \: we \: get}}

\rm :\longmapsto\:\dfrac{ydx - xdy}{ {y}^{2} }  =  -  {3x}^{2}{( {e}^{ {x}^{3} })}dx

\rm :\longmapsto\:d\bigg( \dfrac{x}{y} \bigg) =  - d \: ( {e}^{ {x}^{3} })

\rm :\longmapsto\:\bigg( \dfrac{x}{y} \bigg) =  - \: ( {e}^{ {x}^{3} })   + c

\purple{\bf\implies \:\:\bigg( \dfrac{x}{y} \bigg) + \: ( {e}^{ {x}^{3} }) =  c}

Additional Information :-

The differential equation of the form Mdx + Ndy = 0 is exact Differential equation if

\boxed{ \red{ \bf \:\dfrac{\partial M}{\partial y}  = \dfrac{\partial N}{\partial x}}}

and solution is given by

\boxed{ \red{ \bf \:\int_{y \: constant} Mdx+ \int \:N (term \: not \: containing \: x)dy}} = c

Similar questions