Math, asked by shubham21324842, 11 months ago

ydx-xdy-3x²y²e^x³dx=0​

Answers

Answered by Anonymous
1

Answer:

\large\bold\red{ c =  \frac{x}{y}  -  {e}^{ {x}^{3} } }

Step-by-step explanation:

Given,

A differential equation,

  • ydx - xdy - 3 {x}^{2}  {y}^{2}  {e}^{ {x}^{3} } dx = 0

To solve this DE,

Divide both sides with \bold{{y}^{2}}

Therefore,

We get,

 =  >  \frac{ydx - xdy - 3 {x}^{2} {y}^{2}  {e}^{ {x}^{3} } dx }{ {y}^{2} }  = 0 \\  \\  =  >  \frac{ydx - xdy}{ {y}^{2} }  =  \frac{ 3{x}^{2}  {y}^{2}  {e}^{ {x}^{3} } dx}{ {y}^{2} }  \\  \\  =  > d( \frac{x}{y} ) =   3{x}^{2}  {e}^{ {x}^{3} }  dx

Now,

Integrating both the sides,

We get,

 =  > \int \: d( \frac{x}{y} ) = \int3 {x}^{2}  {e}^{ {x}^{3} } dx \\  \\  =  >  \frac{x}{y}  = \int3 {x}^{2}  {e}^{ {x}^{3} } dx \:  \:  \:  \:  \:  \: .........(i)

Now,

Let us assume that

 {x}^{3}  = t

Differentiating both the sides,

We get,

 =  > 3 {x}^{2} dx = dt

Now,

Substituting this value in eqn (i),

We get,

 =  >  \frac{x}{y}  =\int {e}^{t} dt \\  \\  =  >  \frac{x}{y}  =  {e}^{t}  + c

Substituting the value of t,

We get,

 =  >  \frac{x}{y}  =  {e}^{ {x}^{3} }  + c \\  \\  =  > \bold{ c =  \frac{x}{y}  -  {e}^{ {x}^{3} } }

Similar questions