Math, asked by manushri81, 10 months ago

Yeah...question no. 11



The person answering this knows how much important he is for me.....​

Attachments:

Answers

Answered by Siddharta7
3

Answer:

(x/3y - y/5x)²

Step-by-step explanation:

Given:

(x²/9y²) - (2/15) + (y²/25x²)

⇒ (x/3y)² - (2/15) + (y/5x)²

It can be written as:

⇒ (x/3y)² - 2(x/3y)(y/5x) + (y/5x)²

[∵ a² - 2ab + b² = (a - b)²]

(x/3y - y/5x)²

Hope it helps!

Answered by mysticd
2

Answer:

\red {\frac{x^{2}}{9y^{2}} - \frac{2}{15} + \frac{y^{2}}{25x^{2}}}

\green {= \left( \frac{x}{3y} - \frac{y}{5x}\right)\left( \frac{x}{3y} - \frac{y}{5x}\right)}

Step-by-step explanation:

\frac{x^{2}}{9y^{2}} - \frac{2}{15} + \frac{y^{2}}{25x^{2}}

 = \left(\frac{x}{3y}\right)^{2} - 2\times \frac{x}{3y} \times \frac{y}{5x} + \left( \frac{y}{5x}\right)^{2}

 =  \left( \frac{x}{3y} - \frac{y}{5x}\right)^{2}

\boxed { \pink { a^{2} - 2ab + b^{2} =  (a-b)^{2}}}

 = \left( \frac{x}{3y} - \frac{y}{5x}\right)\left( \frac{x}{3y} - \frac{y}{5x}\right)

•••♪

Similar questions