Math, asked by tijupathayil, 11 months ago

Yeh question jaldi se solve kare yaar... Plss...

Attachments:

Answers

Answered by Anonymous
124

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

\red{\implies\:144}

\large{\underline{\underline{\mathfrak{\sf{Given\:Here:-}}}}}.

  • \:f(x)\:=\:x^2-4x+3

  • \alpha\:and\beta\:are\:zeros

\large{\underline{\underline{\mathfrak{\bf{Find\:here:-}}}}}.

  • \:value\:of\:(\alpha^4\beta^2+\alpha^2\beta^4)

\large{\underline{\underline{\mathfrak{\bf{Explanation:-}}}}}.

We know that's ,

\large\boxed{\:Sum\:of\:Zeros\:=\frac{-(coefficient\:of\:x)}{(coefficient\:of\:x^2)}}

\implies\:(\alpha+\beta)\:=\frac{-(-4)}{1}

\implies\:(\alpha+\beta)\:=\: 4....(1)

Now,

Squaring Both side ,

\implies\:(\alpha+\beta)^2\:=\:(4)^2

\implies\:(\alpha+\beta)^2\:=\:16.....(2)

Again,

\large\boxed{\:(Product\:of\:Zeros)\:=\frac{(Constant\:part)}{(coefficient\:of\:x^2)}}

\implies\:(\alpha\beta)\:=\frac{(3)}{1}

\implies\:(\alpha\beta)\:=\;3.....(3)

We Find Here,

\implies\:(\alpha^4\beta^2+\alpha^2\beta^4)

\implies\:\alpha^2\beta^2(\alpha^2+\beta^2)

Keep Value by equation (2) and (3),

\implies\:(3)^2×(16)

\implies\:9×16

\implies\boxed{\:144}

____________________

Similar questions