Math, asked by SwapnilTapre, 1 month ago

Yield of soybeans per acre in quintal in mukund's field for 7 years was 10,7,5,3,9,6,9 find the mean of yield par acre ​

Answers

Answered by 12thpáìn
31

We know that

  \\ \small\sf{Mean = \dfrac{Sum~ Of~ Observation}{Number\ of\ Observation } }

\sf{Mean = \dfrac{10 + 7 + 5 + 3 + 9 + 6 + 9}{7 } }

\sf{Mean = \dfrac{49}{7 } }

\sf{Mean = 7 }

Hence, the mean of yield par acre is 7.

____________________

More to know

\begin{gathered}{\sf{3Median=Mode+2Mean}}\\\end{gathered}

\begin{gathered}\\\boxed{\bf{Mean=\dfrac{\sum f_1 x_1}{\sum f_1}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\\\begin{gathered} \sf{Median}\begin{cases}\sf{\:\;\; value \: of \: \left( \frac{n+1}{2}\right)^{th} observations \: if \: n \: is \: odd} \\ \\\sf{\;\;\; \cfrac{value \: of \: \left( \frac{n}{2}\right)^{th} observations + value \: of \: \left( \frac{n+1}{2}\right)^{th} observations} {2}\ if \ n \ is \ even}\end{cases}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

\sf{Class\ Mark=\dfrac{Lower \ limit+ upper\ limit}{2}}

Answered by rosoni28
42

\huge \mathbb{ \red {★᭄ꦿ᭄S} \pink{ᴏ}\purple{ʟᴜ} \blue {ᴛ} \orange{ɪ} \green{ᴏɴ★᭄ꦿ᭄}}

  • We know that.

 \begin{gathered} \\ \small\tt \red{Mean = \dfrac{Sum~ Of~ Observation}{Number\ of\ Observation } }\end{gathered}

\tt \pink{Mean = \dfrac{10 + 7 + 5 + 3 + 9 + 6 + 9}{7 } }

\tt \purple{Mean = \dfrac{49}{7 } }

\tt \orange{Mean = 7 }

  • Hence, the mean of yield par acre is 7.

________________________________

  • More to know

\begin{gathered}\begin{gathered}{\tt \green{3Median=Mode+2Mean}}\\\end{gathered} \end{gathered}

 \begin{gathered}\begin{gathered}\\\boxed{\tt \blue{Mean=\dfrac{\sum f_1 x_1}{\sum f_1}}}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\\\begin{gathered} \tt \pink{Median}\begin{cases}\tt \red{\:\;\; value \: of \: \left( \frac{n+1}{2}\right)^{th} observations \: if \: n \: is \: odd} \\ \\\tt \purple{\;\;\; \cfrac{value \: of \: \left( \frac{n}{2}\right)^{th} observations + value \: of \: \left( \frac{n+1}{2}\right)^{th} observations} {2}\ if \ n \ is \ even}\end{cases}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered}

 \tt \blue{Class\ Mark=\dfrac \green{Lower \ limit+ upper\ limit} \orange{2}}

NOTE::- SLIDE THE ANSWER TO RIGHT AND LEFT IN ORDER TO VEIW FULL ANSWER..

BE BRAINLY!!

Similar questions