Physics, asked by meghamanoj1972, 8 months ago

You are given 3 bulbs rated 180V - 40W, 240V - 60W, 200V - 100W. Which bulb has the highest resistance
2) 60W bulb
3) 100W
4) 1 & 2​

Answers

Answered by RISH4BH
103

Given:-

  • Three types of bulb is given .
  1. \tt Bulb\; A \:- 180V\: , \:40W.
  2. \tt Bulb\; B -\: 240V\: , \;60W.
  3. \tt Bulb \;C\: - 200V\; ,\: 100W .

To Find:-

  • \tt Which\: bulb \:has\: a \:higher\: resistance.

Formula Used:-

Power can be calculated using ,

\large\purple{\underline{\boxed{\orange{\tt{\dag Power\:\:=\:\:\dfrac{Voltage^2}{Resistance}}}}}}

Where ,

  • V is voltage.
  • R is resistance.

Calculation:-

\underline{\tt{\pink{\hookrightarrow For\:Bulb\:A:-}}}

  • Voltage = 180V .
  • Power = 40W .

So , on putting the values in the above formula stated we have :-

\tt:\implies Power=\dfrac{V^2}{R}

\tt:\implies 40W =\dfrac{180V^2}{R}

\tt:\implies  R =\dfrac{\cancel{180}\times\cancel{180}}{\cancel{40}}

\underline{\boxed{\red{\tt{\longmapsto R = 810\Omega}}}}

_________________________________________

\underline{\tt{\pink{\hookrightarrow For\:Bulb\:B:-}}}

  • Voltage = 240V .
  • Power = 60W .

So , on putting the values in the above formula stated we have :-

\tt:\implies Power=\dfrac{V^2}{R}

\tt:\implies 60W =\dfrac{240V^2}{R}

\tt:\implies  R =\dfrac{\cancel{240}\times\cancel{240}}{\cancel{60}}

\underline{\boxed{\red{\tt{\longmapsto R = 960\Omega}}}}

_________________________________________

\underline{\tt{\pink{\hookrightarrow For\:Bulb\:C:-}}}

  • Voltage = 200V .
  • Power = 100W .

So , on putting the values in the above formula stated we have :-

\tt:\implies Power=\dfrac{V^2}{R}

\tt:\implies 100W =\dfrac{200V^2}{R}

\tt:\implies  R =\dfrac{\cancel{200}\times\cancel{200}}{\cancel{100}}

\underline{\boxed{\red{\tt{\longmapsto R = 400\Omega}}}}

\tt{Hence\:here\:we\:can\:see\:that:}

\blue{\boxed{\boxed{\red{\bf{\dag R_B\:\:\:\:\:>R_A\:\:\:\:\:>R_C\:\:\:\:\:}}}}}

\underline\purple{\tt{\leadsto Hence\:60W\:bulb\:has\:largest\: resistance.}}

Answered by gayatrikumari99sl
0

Answer:

Option (2) 60 W bulb has the highest resistance  960Ω.

Explanation:

Let the bulbs be B_1 ,B_2 and B_3  and

Let the resistances be R_1 ,R_2 and \  R_3

Therefore given in the question that 3 bulbs rated  ,

Bulb one contain B_1 - 180V ,40W ,

Second bulb  contain B_2 - 240V ,60W and

Third bulb  contain B_3 - 200V , 100W

As we know that , Power = \frac{voltage ^2}{Resistance }

Therefore , For bulb B_1 ,

Given , voltage = 180V and Power = 40 W .

Power = \frac{V^2}{R}

⇒40 = \frac{180 .180 }{R}R_1 = \frac{32400}{40 } = 810 Ω

Similarly , for  the second bulb B_2 ;

Given , Voltage = 240V and power = 60 W .

⇒60 = \frac{240 .240}{R}R_2 = \frac{240.240}{60} = \frac{57600}{60} = 960 Ω

For the third bulb B_3 ;

Given voltage = 200V and power = 100W .

⇒Power  = \frac{V^2}{R}

⇒100 = \frac{200 .200}{R}  ⇒R_3 = \frac{200 . 200}{100} = 400Ω

Therefore , here we can see that , second bulb has the highest resistance 960Ω .

#SPJ2

Similar questions