Math, asked by vmanvi06, 8 months ago


You are stationed at a radar base and you observe an unidentified plane at an altitude h = 5000 m
flying towards your radar base at an angle of elevation = 30°. After exactly one minute. your radar sweep
reveals that the plane is now at an angle of elevation = 60° maintaining the same altitude. What is the
speed (in m s) of the plane?

Answers

Answered by Anonymous
11

Answer:

5773.502691896257

Step-by-step explanation:

tan 30 = DC/ AC = 5000/AC

1/√3= 5000/AC

AC = 5000√3

tan 60 = ED/ AB = 5000/AB

√3 = 5000/AB

AB = 5000/ √3

DE = AC- AB = 5000√3 - 5000 / √3

= 10000√3 m

Speed = distance/ time

= 10000√3 m/ 60 secs

= 5773.502691896257

Answered by shrreyajhavveri
0

Answer:

Speed = 1000 m/s approx

Step-by-step explanation:

when the angle between the radar base and the plan is 30°and the height is 5000m

let the angle ∠ABC be 30° and AC be 5000m

there fore tan 30° = \frac{AC}{BC}

                             \frac{1}{\sqrt{3} }  = \frac{5000}{x}

                              x= 5000\sqrt{3} m

When the angle between the radar base and the plan is 60°and the height is 5000m

let the angle ∠A'B'C' be 30° and A'C' be 5000m

there fore tan 60° = \frac{A'C'}{B'C'}

                           \sqrt{3} = \frac{5000}{x'}

                            x' = \frac{5000}{\sqrt{3} }

Distance is  =  5000\sqrt{3} m-  \frac{5000}{\sqrt{3} }

                    = \frac{10000}{\sqrt{3} }m

Speed = \frac{Distance}{Time}

           = \frac{10000}{\sqrt{3}*60}

          = \frac{10000}{10.38}

          = 1000 m/s approx

                                                                                                   

                                                                                                         

Similar questions