Math, asked by mahendrasingh09123, 8 months ago

you can also ask from Google please please this is the question ​

Attachments:

Answers

Answered by vedantvispute38
2

Step-by-step explanation:

{( \frac{ {5}^{a} }{ {5}^{b} })}^{a + b} \times  {( \frac{ {5}^{b} }{ {5}^{c} })}^{b  + c}  \times {( \frac{ {5}^{c} }{ {5}^{a} })}^{a + c}  = 1 \\ lhs = {( \frac{ {5}^{a} }{ {5}^{b} })}^{a + b} \times  {( \frac{ {5}^{b} }{ {5}^{c} })}^{b  + c}  \times {( \frac{ {5}^{c} }{ {5}^{a} })}^{a + c} \\ lhs = ( {{5}^{a - b} }) ^{a + b}  \times ( {{5}^{b - c} }) ^{b + c}  \times( {{5}^{c - a} }) ^{c + a}  \\lhs  =  {5}^{ {a}^{2} -  {b}^{2}  }  \times {5}^{ {b}^{2} -  {c}^{2}  }  \times {5}^{ {c}^{2} -  {a}^{2}  }    \\ lhs =  {5}^{{a}^{2} -  {b}^{2} +{b}^{2} -  {c}^{2} + {c}^{2} -  {a}^{2} }  =  {5}^{0}  = 1

Hence Proved...

Similar questions