Math, asked by kavyasridasari123, 9 months ago

you can please tell me the answers ​

Attachments:

Answers

Answered by mathgenius8
0

Answer:

hope it helps you matee

Step-by-step explanation:

a power m×a power n=a power m+n

Attachments:
Answered by MaIeficent
9

Step-by-step explanation:

\bf{\underline{\underline\red{To\:Find:-}}}

  • \rm(i) \:  \:   {2}^{ - 3}  \times {2}^{ - 2}

  •  \rm(ii) \:  \:   {7}^{ - 2}  \times {7}^{ 5}

  •  \rm(iii) \:  \:   {3}^{ 4}  \times {3}^{ - 5}

  •  \rm(iv) \:  \:   {7}^{ 5}  \times {7}^{ - 4}\times {7}^{-6}

  •  \rm(v) \:  \:   {m}^{ 5}  \times {m}^{ - 10}

  •  \rm(vi) \:  \:   {(-5)}^{ - 3}  \times {(-5)}^{ - 4}

\bf{\underline{\underline\green{Solution:-}}}

\rm(i) \:  \:   {2}^{ - 3}  \times {2}^{ - 2}

By using the identity

\boxed{ \rm  \implies{ a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

{ \rm  \implies{ 2}^{ - 3}  \times  {2}^{ - 2}}

{ \rm  \implies{ 2}^{ - 3 + ( - 2)}  }

{ \rm  \implies{ 2}^{ - 3  - 2}  }

{ \rm  \implies{ 2}^{ - 5}  }

__________________

\rm(ii) \:  \:   {7}^{ - 2}  \times {7}^{ 5}

By using the identity

\boxed{ \rm  \implies{ a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

{ \rm  \implies{ 7}^{ - 2}  \times  {7}^{ 5}}

{ \rm  \implies{ 7}^{ - 2 + ( 5)}  }

{ \rm  \implies{ 7}^{ - 2  + 5}  }

{ \rm  \implies{ 7}^{ 3}  }

___________________

\rm(iii) \:  \:   {3}^{ 4}  \times {3}^{ - 5}

By using the identity

\boxed{ \rm  \implies{ a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

{ \rm  \implies{ 3}^{ 4}  \times  {3}^{ - 5}}

{ \rm  \implies{ 3}^{ 4 + ( - 5)}  }

{ \rm  \implies{ 3}^{ 4 - 5}  }

{ \rm  \implies{ 3}^{ - 1 } }

___________________

\rm(iv) \:  \:   {7}^{ 5}  \times {7}^{ - 4} \times {7}^{-6}

By using the identity

\boxed{ \rm  \implies{ a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

{ \rm  \implies{ 7}^{ 5}  \times  {7}^{ - 4}\implies {7}^{-6}}

{ \rm  \implies{ 7}^{ 5 + ( - 4)+ (-6)}  }

{ \rm  \implies{ 7}^{ 5 - 4-6}  }

{ \rm  \implies{ 7}^{ -5}  }

___________________

\rm(v) \:  \:   {m}^{ 5}  \times {m}^{ - 10}

By using the identity

\boxed{ \rm  \implies{ a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

{ \rm  \implies{ m}^{ 5}  \times  {m}^{ - 10}}

{ \rm  \implies{ m}^{ 5 + ( - 10)}  }

{ \rm  \implies{ m}^{ 5  - 10}  }

{ \rm  \implies{ m}^{ - 5}  }

____________________

{ \rm  \implies {( - 5)}^{ - 3}  \times  {( - 5)}^{ - 4} }

By using the identity

\boxed{ \rm  \implies{ a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

{ \rm  \implies {( - 5)}^{ - 3}  \times  {( - 5)}^{ - 4} }

{ \rm  \implies {( - 5)}^{ - 3 + ( - 4)} }

{ \rm  \implies {( - 5)}^{ - 3  - 4} }

{ \rm  \implies {( - 5)}^{ - 7} }

Similar questions