you have to answer both question
Answers
Step-by-step explanation:
(i)
Given p(x) = x⁴ - 6x³ - 26x² - 138x - 35.
Given zeroes are (2 + √3) and (2 - √3).
∴ [x - (2 + √3)][(x - (2 - √3)]
= (x - 2 - √3)(x - 2 + √3)
= (x - 2)² - (√3)²
= x² + 4 - 4x - 3
= x² - 4x + 1
So, x² - 4x + 1 is a factor of p(x).
Now,
We have to divide p(x) by x² - 4x + 1.
Long Division Method:
x² - 4x + 1) x⁴ - 6x³ - 26x² + 138x - 35 (x² - 2x - 35
x⁴ - 4x³ + x²
--------------------------------------
-2x³ - 27x² + 138x
-2x³ + 8x² - 2x
--------------------------------------
-35x² + 140x - 35
-35x² + 140x - 35
------------------------------------------
0
Now,
We have to find other two zeroes of x² - 2x - 35.
= x² - 7x + 5x - 35
= x(x - 7) + 5(x - 7)
= (x + 5)(x - 7)
So, its zeroes are -5, 7.
Hence, all the zeroes of the polynomial are:
2 + √3, 2 - √3, -5,7
(ii)
Given polynomial is 3x² - 8x + 2k + 1.
Let one zero of the polynomial is α.
Then, the other zero will be 7α.
Sum of zeroes:
α + 7α = -b/a
⇒ 8α = -8/3
⇒ α = -1/3
Product of zeroes:
α * 7α = c/a
⇒ 7α² = (2k + 1)/3
⇒ 7(-1/3)² = (2k + 1)/3
⇒ 7(1/9) = (2k + 1)/3
⇒ 7/3 = (2k + 1)
⇒ 4/3 = 2k
⇒ 4/6 = k
⇒ k = 2/3.
∴ Thus, value of k = 2/3.
Hope it helps!
hope it helps!..................