you have to prove
(sin A + cos A)² + (sin A - cos A)² = 2
Answers
Answered by
2
Answer:
L.H.S
(sin A + cos A)² + (sin A - cos A)²
= sin²A + cos²B + 2 sinA cosB
+ sin²A + cos²B - 2sinA cosB
= sin²A + cos²B + sin²A + cos²B
= 1 + 1
=2
=R.H.S (proved)
Note:
* sin²A+cos²A=1
*sec²A-tan²A=1
*cosec²A-cot²A=1
(i) (a+b)²= a²+b²+2ab
(ii) (a-b)²= a²+b²-2ab
Answered by
6
Given :
(sin A + cos A)² + (sin A - cos A)² = 2
To prove :
LHS = RHS
Proof :
RHS = 2
LHS = (sin A + cos A)² + (sin A - cos A)²
= (sin A + cos A)² + (sin A - cos A)²
= sin² A + cos² A +2 sin A cos A + sin² A + cos² A - 2 sin A cos A
We know that :-
sin² x + cos² y = 1
= 1 +2 sin A cos A + 1 - 2 sin A cos A
= 1+1 +2 sin A cos A - 2 sin A cos A
= 2 +0
= 2
Therefore, LHS = RHS
hence proved
Additional Information :
Similar questions