Math, asked by missgunjan, 1 year ago

you have to prove that sin A cos A = 1/2 root 2​

Attachments:

Answers

Answered by sivaprasath
0

Answer:

Step-by-step explanation:

Given :

To prove :

sinAcosA=\frac{\sqrt{2} }{4} if tanA=\sqrt{2} -1

Solution :

tanA=\sqrt{2} -1

By multiplying & dividing by \sqrt{2}+1

We get,

tanA=\sqrt{2} -1 \times \frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{(\sqrt{2}-1)(\sqrt{2}+1)}{\sqrt{2}+1} = \frac{(\sqrt{2})^2-(1)^2}{\sqrt{2}+1} = \frac{2 -1}{\sqrt{2}+1} = \frac{1}{\sqrt{2}+1}

tanA= \frac{1}{\sqrt{2}+1}

__

We know that,

tanA=\frac{sinA}{cosA} = \frac{1}{\sqrt{2} + 1},

Then,

sinA =\frac{Opposite(or)Perpendicular}{Hypotenuse} = \frac{1k}{Hypotenuse}

cosA =\frac{Adjcent(or)Base}{Hypotenuse} = \frac{(\sqrt{2}+1)k}{Hypotenuse}

(Hypotenuse)^2 = (Perpendicular)^2+(Base)^2

(Hypotenuse)^2 = (1k)^2 + [(\sqrt{2} +1)k]^2

(Hypotenuse)^2 = k^2 + [(2+1+2\sqrt{2})k]

(Hypotenuse)^2 = k^2 + (3k^2+2k^2\sqrt{2})

(Hypotenuse)^2 =4k^2+2k^2\sqrt{2}

Hypotenuse =\sqrt{4k^2+2k^2\sqrt{2}} = k\sqrt{4+2\sqrt{2}}

__

sinAcosA = \frac{perpendicular}{Hypotenuse} \times \frac{Base}{Hypotenuse} = \frac{1k}{k\sqrt{4+2\sqrt{2}}} \times \frac{(\sqrt{2}+1)k}{k\sqrt{4+2\sqrt{2}}} = \frac{\sqrt{2}+1 }{4+2\sqrt{2} } = \frac{\sqrt{2}+1}{2\sqrt{2}(\sqrt{2}+1)} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}

Hence proved,.

Answered by Marsmars
0

................................

Attachments:
Similar questions