You must have heard about genetically modified foods find the nutritional value of genetically modified foods
Answers
Answer:
Nutritional value of genetically modified foods:
Nutritional Content of Food
Ways the nutrient profile and density of a food can be altered include: gene modification, agricultural growing and feeding practices, conventional plant breeding and selection, and vitamin biofortification. A gene selected for modification can increase or decrease the vitamin, mineral or fatty acid content found in the modified food. For example, golden rice is genetically altered to increase its beta carotene content. Sometimes when one nutrient is increased another will decrease as an unintended consequence. For example, canola oil genetically engineered to contain vitamin A has reduced vitamin E levels. Growing and feeding practices such as grass-fed versus corn-based animal husbandry, and wild versus farm-raised fish, alters the animal’s fatty acid profile. The amount of omega-3 fatty acids found in eggs varies depending upon the chicken’s diet. Conventional plant breeding and selection can also change the nutritional profile, and has been practiced for a very long time. Finally, grains and cereals are frequently fortified with iron and vitamins before being marketed without the need for genetic modification.
There are intended and unintended consequences of gene modification. Some of the intended goals driving the genetic modification of food include an altered nutritional profile, longer shelf life, and better texture and flavor. Other goals include improved agronomic characteristics such as insect and disease resistance, and herbicide and climate tolerance. For example, plant geneticists can isolate a gene responsible for drought tolerance and insert that gene into a different plant. The new genetically modified plant will then be drought tolerant as well. As the world population grows, perhaps genetic modification can increase crop yields.
GMO AppleThe unintended consequences of genetic modification include an increased potential for new allergens in the food supply, antibiotic resistance, toxicity and environmental challenges. Genetic modification ultimately results in the introduction of new proteins into the food supply. True antibody mediated food allergies are an important health issue occurring in approximately 2% of adults and nearly 5% of children. Protecting people with food allergies from unwanted exposure to these new proteins represents a major public health challenge for genetically modified sources of food. Additionally, consumption of foods genetically modified by using “antibiotic resistance markers” may reduce the effectiveness of antibiotics to fight bacterial diseases. Antibiotic-resistant genes produce enzymes that degrade antibiotics and might be transferred to human or animal pathogens, also making them resistant to antibiotics. Finally, a gene selected for modification may have two functions, one with the desired effect and one that has an undesired effect like enhancing natural plant toxins. This occurs in legumes (protease inhibitors), lima beans (cyanogens) and canola species (goitrogens).