Math, asked by Anonymous, 3 months ago

You're super-cool if you help me!! ​

Attachments:

Answers

Answered by shadowsabers03
20

To find the area of the shaded region, we need to subtract the area under y=4\sin^2x from the area under y=4 in the interval limit \left[\dfrac{\pi}{2},\ \dfrac{3\pi}{2}\right].

So the area of the shaded region is given by,

\displaystyle\longrightarrow A=\int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}}\left(4-4\sin^2x\right)\ dx

\displaystyle\longrightarrow A=4\int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}}\left(1-\sin^2x\right)\ dx

Since 1-\sin^2x=\cos^2x,

\displaystyle\longrightarrow A=4\int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}}\cos^2x\ dx

\displaystyle\longrightarrow A=2\int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}}2\cos^2x\ dx

Since 2\cos^2x=1+\cos(2x),

\displaystyle\longrightarrow A=2\int\limits_{\frac{\pi}{2}}^{\frac{3\pi}{2}}(1+\cos(2x))\ dx

\displaystyle\longrightarrow A=2\left[x+\dfrac{1}{2}\sin(2x)\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}}

\displaystyle\longrightarrow A=2\left[\left(\dfrac{3\pi}{2}-\dfrac{\pi}{2}\right)+\dfrac{1}{2}(\sin(3\pi)-\sin\pi)\right]

\displaystyle\longrightarrow A=2\left[\pi+\dfrac{1}{2}(0-0)\right]

\displaystyle\longrightarrow\underline{\underline{A=2\pi}}

Hence is the answer.


Anonymous: Fantastic bhaiya!
amansharma264: Great
Answered by moonwatcher
3

Answer:

Step-by-step explanation:

That should be correct, sorry if not, Take care TwT Hope this helps you.

Similar questions