Math, asked by learner2006, 8 months ago

YOU SHOULD NOT USE BINOMIAL THEOREM OR FIND THE VALUE OF X TO FIND THE ANSWER !!!!!
YOU SHOULD FIND THE ANSWER BY USING IDENTIES ONLY .
WHO ANSWERS FRIST AND CORRECT WILL BE MARKED BRAINLIEST​

Attachments:

Answers

Answered by Darkrai14
167

ᏀᏆᏙᎬΝ:-

\sf x + \dfrac{1}{x} = 5

Ͳϴ ҒᏆΝᎠ:-

\sf \sqrt{x} + \dfrac{1}{ \sqrt{x}}

Solution:-

Squaring \sf \sqrt{x} + \dfrac{1}{ \sqrt{x}} and using identity \sf (a+b)^2 = a^2 + b^2 + 2ab will give

\sf \implies \Bigg ( \sqrt{x} + \dfrac{1}{ \sqrt{x}} \Bigg )^2 = ( \sqrt{x} )^2 + \Bigg ( \dfrac{1}{ \sqrt{x}} \Bigg )^2 + 2 \times \sqrt{x} \times \dfrac{1}{ \sqrt{x}}

\sf \implies \Bigg ( \sqrt{x} + \dfrac{1}{ \sqrt{x}} \Bigg )^2 = x +\dfrac{1}{x} + 2

\sf \implies \Bigg ( \sqrt{x} + \dfrac{1}{ \sqrt{x}} \Bigg )^2= 5 + 2

\sf \implies \Bigg ( \sqrt{x} + \dfrac{1}{ \sqrt{x}} \Bigg )^2= 7

\sf \implies \sqrt{x} + \dfrac{1}{ \sqrt{x}}= \sqrt{7}

\boxed{ \sqrt{x} + \dfrac{1}{ \sqrt{x}} = \sqrt{7}}

Hope it helps.

Similar questions