Math, asked by adinarayanakanta, 11 months ago

you will solve it i will mark it as brainiest question​

Attachments:

Answers

Answered by Nereida
1

Answer:

\longrightarrow\tt{\bigg(\dfrac{tan\:A}{1-cot\:A}+\dfrac{cot\:A}{1-tan\:A}\bigg)}

Now, we know that cot A = 1/tan A.

Hence,

\longrightarrow\sf{\bigg(\dfrac{tan\:A}{1-\dfrac{1}{tan\:A}}+\dfrac{\dfrac{1}{tan\:A}}{1-tan\:A}\bigg)}

Simplifying,

\longrightarrow\sf{\Bigg(\dfrac{\dfrac{tan\:A}{1}}{\dfrac{tan\:A-1}{tan\:A}}+\dfrac{\dfrac{1}{tan\:A}}{\dfrac{1-tan\:A}{1}}\Bigg)}

\longrightarrow\sf{\bigg(\dfrac{tan\:A}{1}\times\dfrac{tan\:A}{tan\:A-1}\bigg)+\bigg(\dfrac{1}{tan\:A}\times \dfrac{1}{1-tan\:A}\bigg)}

\longrightarrow\sf{\bigg(\dfrac{tan^2\:A}{tan\:A-1}+\dfrac{1}{tan\:A(1-tan\:A)}\bigg)}

Taking out common,

\longrightarrow\sf{\Bigg(\dfrac{1}{tan\:A-1}\bigg(\dfrac{tan^2\:A}{1}+\dfrac{1}{tan\:A}\bigg)\Bigg)}

Taking LCM,

\longrightarrow\sf{\Bigg(\dfrac{1}{tan\:A-1}\bigg(\dfrac{tan^3\:A-1}{tan\:A}\bigg)\Bigg)}

Using the identity – (a³-b³) = (a-b)(a²+b²+ab).

\longrightarrow\sf{\Bigg(\dfrac{1}{\cancel{tan\:A-1}}\bigg(\cancel{(tan\:A-1)}\times \dfrac{tan^2\:A+1+tan\:A}{tan\:A}\bigg)\Bigg)}

Hence, we are left with,

\longrightarrow\sf{\Bigg( \dfrac{tan^2\:A+1+tan\:A}{tan\:A}\Bigg)}

Now, we know that, sec² A = tan² A + 1.

Hence,

\longrightarrow\sf{\Bigg( \dfrac{sec^2\:A+tan\:A}{tan\:A}\Bigg)}

Now simplifying,

\longrightarrow\sf{\Bigg( \dfrac{sec^2}{tan\:A}+\cancel{\dfrac{tan\:A}{tan\:A}}\Bigg)}

Now, we are left with,

\longrightarrow\sf{\Bigg( \dfrac{sec^2}{tan\:A}+1\Bigg)}

Simplifying to get final answer,

\longrightarrow\sf{\Bigg( \dfrac{\dfrac{1}{cos^2\:A}}{\dfrac{sin\:A}{cos\:A}}+1\Bigg)}

\longrightarrow\sf{\Bigg( \dfrac{\dfrac{1}{cos\:A}}{\dfrac{sin\:A}{1}}+1\Bigg)}

\longrightarrow\sf{\Bigg( \dfrac{1}{cos\:A}\times \dfrac{1}{sin\:A}+1\Bigg)}

Hence, the final answer is :-

\longrightarrow{\boxed{\pink{\bf{sec\:A\:cosec\:A+1}}}}

Answered by Anonymous
14

Step-by-step explanation:

_________________________

 \bf \huge Given \:  \:

 \bf  tanA/(1 - cotA) + cotA/(1 - tanA)\:  \:

\bold{\implies \frac{sinA/cosA}{1 - cosA/sinA} + \frac{cosA/sinA}{1 - sinA/cosA}}</p><p>

\bold{\implies \frac{sin^2A}{cosA(sinA - cosA)} + \frac{cos^2A}{sinA(cosA - sinA)}}

\bold{\implies \frac{sin^2A}{cosA(sinA - cosA)} - \frac{cos^2A}{sinA(sinA - cosA)}}</p><p>

\bold{\implies \frac{sin^3A - cos^3A}{sinA.cosA(sinA - cos)}}</p><p>

\bold{\implies \frac{\cancel{(sinA - cosA)}(sin^2A + cos^2A + sinAcosA)}{sinA.cosA\cancel{(sinA - cosA)}}}</p><p>

 \bf[as, a^3 - b^3 = (a - b)(a^2+ b^2+ ab) \:  \:

 \bf (sin^2+ cos^2 = 1]\:  \:

Applying the Formula

\bold{\implies \frac{(1 + sinA.cosA)}{sinA.cosA}}

\bold{\implies \frac{1}{sinA.cosA} + \frac{sinA.cosA}{sinA.cosA}}</p><p>

\bold{\implies secA.cosecA + 1} \\

\bold{\implies \frac{tanA}{(1 - 1/tanA)} + \frac{(1/tanA)}{(1 - tanA)}}  </p><p>

\bold{\implies \frac{tan^2A}{(tanA - 1)} + \frac{1}{tanA(1 - tanA)}}</p><p>  \\  \\ </p><p></p><p>\bold{\implies \frac{1}{tan(1 - tanA)} - \frac{tan^2A}{(1 - tanA)}}

\bold{\implies \frac{1 - tan^3A}{tanA(1 - tanA)}}

\bold{\implies \frac{\cancel{(1 - tanA)}\{(1 + tan^2A) + tanA\}}{tanA\cancel{(1 - tanA)}}}

\bold{\implies \frac{sec^2A + tanA}{tanA}}

\bold{\implies \frac{1}{cos^2A}{cosA}{sinA} + \frac{tanA}{tanA}}

\bold\red{{\implies secA.cosecA + 1}}

option a is Right answer

Similar questions