English, asked by vallisuba515, 8 months ago

your amar/aparna of class x.you need various books and guidebooks for your reference. write a letter to vidyavani book center,salem,placing an order for the supply giving all the details of the books required. please answer correctly​

Answers

Answered by TheValkyrie
5

Answer:

Explanation:

Format of a letter of ordering things:

Sender's Address

Date

Receiver's Address

Sub: To place an order for ...

Sir,

Introduction

Body

  • Items and description

Conclusion

With regards/Yours truly/Yours faithfully

Sd/-

Name

Required letter:

56 Sector

Salem

17 September 2020

The Manager

Vidyavani Book Center

Salem

Sub: To place an order for books

Sir

I, Aparna of class 10 of TRV Public School, Salem would like to place an order for the following books.

\begin{array}{|c|c|c|} \cline{1-3} \bf Sl.No & \bf Books & \bf Quantity\\ \cline{1-3} \sf 1. & \sf ABC\:Mathematics\:for\:class\:10 & \sf 1\\ \cline{1-3} \sf 2. & \sf PQR\:Science\:for\:class\:10 & \sf 2 \\ \cline{1-3} \sf 3. & \sf XYZ\:Communicative\:English-Class\:10 & \sf 1 \\\cline{1-3}\end{array}

All the books should be of A₁ grade and packed properly. The books should reach within the next ten working days. Kindly provide the maximum concession. Payment will be done on delivery. Any damage to the books during transportation will be your responsiblity. No payment will be offered if the books are found to be damaged.

With regards

Sd/-

Aparna

Answered by abdulrubfaheemi
0

Answer:

Answer:

Explanation:

\Large{\underline{\underline{\it{Given:}}}}

Given:

\sf{\dfrac{tan\:A}{sec\:A-1} -\dfrac{sin\:A}{1+cos\:A} =2\:cot\:A}

secA−1

tanA

1+cosA

sinA

=2cotA

\Large{\underline{\underline{\it{To\:Prove:}}}}

ToProve:

LHS = RHS

\Large{\underline{\underline{\it{Solution:}}}}

Solution:

→ Taking the LHS of the equation,

\sf{LHS=\dfrac{tan\:A}{sec\:A-1} -\dfrac{sin\:A}{1+cos\:A} }LHS=

secA−1

tanA

1+cosA

sinA

→ Applying identities we get

=\sf{\dfrac{\dfrac{sin\:A}{cos\:A} }{\dfrac{1}{cos\:A}-1 } -\dfrac{sin\:A}{1+cos\:A} }=

cosA

1

−1

cosA

sinA

1+cosA

sinA

→ Cross multiplying,

=\sf{\dfrac{\dfrac{sin\:A}{cos\:A} }{\dfrac{1-cos\:A}{cos\:A} } -\dfrac{sin\:A}{1+cos\:A} }=

cosA

1−cosA

cosA

sinA

1+cosA

sinA

→ Cancelling cos A on both numerator and denominator

=\sf{\dfrac{sin\:A}{1-cos\:A} -\dfrac{sin\:A}{1+cos\:A}}=

1−cosA

sinA

1+cosA

sinA

→ Again cross multiplying we get,

=\sf{\dfrac{sin\:A(1+cos\:A)-sin\:A(1-cos\:A)}{(1+cos\:A)(1-cos\:A)}}=

(1+cosA)(1−cosA)

sinA(1+cosA)−sinA(1−cosA)

→ Taking sin A as common,

\sf{=\dfrac{sin\:A[1+cos\:A-(1-cos\:A)]}{(1^{2}-cos^{2}\:A ) }}=

(1

2

−cos

2

A)

sinA[1+cosA−(1−cosA)]

\sf{=\dfrac{sin\:A[1+cos\:A-1+cos\:A]}{sin^{2}\:A } }=

sin

2

A

sinA[1+cosA−1+cosA]

→ Cancelling sin A on both numerator and denominator

\sf{=\dfrac{2\:cos\:A}{sin\:A} }=

sinA

2cosA

\sf=2\times \dfrac{cos\:A}{sin\:A} }

\sf{=2\:cot\:A}=2cotA

=\sf{RHS}=RHS

→ Hence proved.

\Large{\underline{\underline{\it{Identitites\:used:}}}}

Identititesused:

\sf{tan\:A=\dfrac{sin\:A}{cos\:A} }tanA=

cosA

sinA

\sf{sec\:A=\dfrac{1}{cos\:A} }secA=

cosA

1

\sf{(a+b)\times(a-b)=a^{2}-b^{2} }(a+b)×(a−b)=a

2

−b

2

\sf{(1-cos^{2}\:A)=sin^{2} \:A}(1−cos

2

A)=sin

2

A

\sf{\dfrac{cos\:A}{sin\:A}=cot\:A}

sinA

cosA

=cotA

Similar questions