Your question⬆️
Answer with full explanation will be mark as brainest..
All the best☺
Attachments:
Answers
Answered by
93
Solution :
=⟹dxdy=dxd[(x+1)2+(x+2)3⋅(x+3)4]
\implies \sf{\dfrac{dy}{dx}[/tex] = + ⟹dxdy=dxd[(x+1)2]+dxd[(x+2)3⋅(x+3)4]
Now, let us differentiate(x+2)3⋅(x+3)4of the equation :
Product rule of differentiation:
By using the product rule of differentiation, and substituting the values in it, we get :
:⟹dxd(uv)=[(x+2)3]⋅dxd[(x+3)4]+[(x+3)4]⋅dxd[(x+2)3]
By using the power rule of differentiation, we get :
Power rule of differentiation:−dxd(xn)=n⋅x(n−1)
⟹dxd(uv)=(x+2)3⋅4(x+3)(4−1)+(x+3)4⋅3(x+2)(3−1)
⟹dxd(uv)=(x+2)3⋅4(x+3)3+(x+3)4⋅3(x+2)2
:⟹dxd(uv)=(x+2)3⋅4(x+3)3+(x+3)4⋅3(x+2)2
∴dxd(uv)=(x+2)3⋅4(x+3)3+(x+3)4⋅3(x+2)2
Now, let us differentiate(x+1)
Similar questions