Math, asked by dhruvi081, 1 day ago

Your question⬆️
Answer with full explanation will be mark as brainest..

All the best☺​

Attachments:

Answers

Answered by PopularStar
93

Solution :

\begin{lgathered}:\implies [tex] \sf{\dfrac{dy}{dx} =\dfrac{d[(x + 1)^{2} + (x + 2)^{3} \cdot (x + 3)^{4}]}{dx}} \\ \\\end{lgathered}⟹dxdy=dxd[(x+1)2+(x+2)3⋅(x+3)4]

[tex] \begin{lgathered} \implies \sf{\dfrac{dy}{dx}[/tex] = \dfrac{d[(x + 1)^{2}]}{dx} + \dfrac{d[(x + 2)^{3} \cdot (x + 3)^{4}]}{dx}}\\ \\\end{lgathered}⟹dxdy=dxd[(x+1)2]+dxd[(x+2)3⋅(x+3)4]

\textsf{Now, let \ us \ differentiate}\: \sf{(x + 2)^{3} \cdot (x + 3)^{4}} \textsf{of \ the \ equation :}Now, let us differentiate(x+2)3⋅(x+3)4of the equation :

\begin{lgathered}\underline{\sf{Product\:rule\:of \:differentiation :-}} \\ \\ \sf{\dfrac{d(uv)}{dx} = (u)\cdot \dfrac{d(v)}{dx} + (v) \cdot \dfrac{d(u)}{dx}} \\ \\ \\\end{lgathered}Product rule of differentiation:−dxd(uv)=(u)⋅dxd(v)+(v)⋅dxd(u)

\begin{lgathered}\textsf{By using the product rule of differentiation, and substituting the values in it, we get :}\\ \\\end{lgathered}By using the product rule of differentiation, and substituting the values in it, we get :

\begin{lgathered}:\implies \sf{\dfrac{d(uv)}{dx} = [(x + 2)^{3}] \cdot \dfrac{d[(x + 3)^{4}]}{dx} + [(x + 3)^{4}] \cdot \dfrac{d[(x + 2)^{3}]}{dx}} \\ \\\end{lgathered}:⟹dxd(uv)=[(x+2)3]⋅dxd[(x+3)4]+[(x+3)4]⋅dxd[(x+2)3]

\begin{lgathered}\textsf{By using the power rule of differentiation, we get :}\\ \\\end{lgathered}By using the power rule of differentiation, we get :

\begin{lgathered}\underline{\sf{Power\:rule\:of \:differentiation :-}} \\ \\ \sf{\dfrac{d(x^{n})}{dx} = n\cdot x^{(n - 1)}} \\ \\ \\\end{lgathered}Power rule of differentiation:−dxd(xn)=n⋅x(n−1)

\begin{lgathered}:\implies \sf{\dfrac{d(uv)}{dx} = (x + 2)^{3} \cdot 4(x + 3)^{(4 - 1)} + (x + 3)^{4} \cdot 3(x + 2)^{(3 - 1)}} \\ \\\end{lgathered}⟹dxd(uv)=(x+2)3⋅4(x+3)(4−1)+(x+3)4⋅3(x+2)(3−1)

\begin{lgathered}:\implies \sf{\dfrac{d(uv)}{dx} = (x + 2)^{3} \cdot 4(x + 3)^{3} + (x + 3)^{4} \cdot 3(x + 2)^{2}} \\ \\\end{lgathered}⟹dxd(uv)=(x+2)3⋅4(x+3)3+(x+3)4⋅3(x+2)2

\begin{lgathered}:\implies \sf{\dfrac{d(uv)}{dx} = (x + 2)^{3} \cdot 4(x + 3)^{3} + (x + 3)^{4} \cdot 3(x + 2)^{2}} \\ \\\end{lgathered}:⟹dxd(uv)=(x+2)3⋅4(x+3)3+(x+3)4⋅3(x+2)2

\begin{lgathered}\boxed{\therefore \sf{\dfrac{d(uv)}{dx} = (x + 2)^{3} \cdot 4(x + 3)^{3} + (x + 3)^{4} \cdot 3(x + 2)^{2}}} \\ \\\end{lgathered}∴dxd(uv)=(x+2)3⋅4(x+3)3+(x+3)4⋅3(x+2)2

\textsf{Now, let us differentiate}\: \sf{(x + 1)^{2}} \textsf{of the equation :}

Now, let us differentiate(x+1)

Similar questions