Math, asked by shahraghunath405, 21 hours ago

your question refer to attachment

plz fast it's urgent ​

Attachments:

Answers

Answered by Talpadadilip783
16

   \scriptsize\colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

 \rule{300pt}{0.1pt}

given :- \rm \: a = 5 -  \sqrt{24}  = 5 - 2 \sqrt{6}

To find:- \rm \: a + \dfrac{1}{a}

Solution :-

 \begin{array}{l} \displaystyle  \rm \frac{1}{a} =  \frac{1}{5 -  \sqrt{24} }  \\   \\ \displaystyle  \rm =  \frac{1}{5 - 2 \sqrt{6} }  \times  \frac{5 +2 \sqrt{6}  }{5 + 2 \sqrt{6} }  \\  \\  \displaystyle  \rm =  \frac{5 + 2 \sqrt{6} }{ {5}^{2}  -(2 \sqrt{6})^{2}   }  \\  \\  \displaystyle  \rm  =  \frac{5+2\sqrt{6}}{25-{(2\sqrt{6})}^{2}} \cdot \frac{25+{(2\sqrt{6})}^{2}}{25+{(2\sqrt{6})}^{2}} \\  \\ \displaystyle  \rm  =\frac{125+120+50\sqrt{6}+48\sqrt{6}}{{25}^{2}-{({(2\sqrt{6})}^{2})}^{2}}  \\ \\ \displaystyle  \rm   = \frac{245 + 98 \sqrt{6} }{625 - (2 \sqrt{6} )^{4} }   \\ \\  \displaystyle  \rm =  \frac{49(5 + 2 \sqrt{6} )}{ {25}^{2} -  {24}^{2}  } \\ \\ \displaystyle  \rm  =  \frac{49(5 + 2 \sqrt{6} )}{625 - 576}  \\ \\  \displaystyle  \rm  =  \frac{ \cancel{49}(5 + 2 \sqrt{6} )} {\cancel{49} } \\ \\ \boxed{\red{  \displaystyle  \rm  = 5 + 2 \sqrt{6}  }}\end{array}

 \\  \rm \therefore \:  \: a +  \frac{1}{a}  = 5 -  \sqrt{24}  + 5 + 2 \sqrt{6}

 = (5+5)+(-2\sqrt{6}+2\sqrt{6})=10

Hence,

 \\   \boxed{\color{darkcyan} \rm a +  \frac{1}{a}  = 10}

Similar questions